Магниторезонансная томография это – Что такое диагностика МРТ? Возможности МРТ-диагностики. Диагностика МРТ головного мозга. Отзывы о МРТ-диагностике

Содержание

Магнитно-резонансная томография — Википедия

МРТ-изображение головы человека

Магни́тно-резона́нсная томогра́фия (МРТ) — способ получения томографических медицинских изображений для исследования внутренних органов и тканей с использованием явления ядерного магнитного резонанса. Способ основан на измерении электромагнитного отклика атомных ядер, чаще всего ядер атомов водорода[1], а именно, на возбуждении их определённым сочетанием электромагнитных волн в постоянном магнитном поле высокой напряжённости.

Годом основания магнитно-резонансной томографии (МРТ) принято считать[2] 1973 год, когда профессор химии Пол Лотербур опубликовал в журнале Nature статью «Создание изображения с помощью индуцированного локального взаимодействия; примеры на основе магнитного резонанса»[3]. Позже Питер Мэнсфилд усовершенствовал математические алгоритмы получения изображения. В 2003 году обоим исследователям была присуждена Нобелевская премия по физиологии или медицине за их открытия, касающиеся метода МРТ. Однако вручению этой премии сопутствовал скандал, как бывало в ряде случаев, по поводу авторства открытия

[4].

В создание магнитно-резонансной томографии известный вклад внёс также американский учёный армянского происхождения Реймонд Дамадьян, один из первых исследователей принципов МРТ, держатель патента на МРТ и создатель первого коммерческого МРТ-сканера. В 1971 году он опубликовал свою идею под названием «Обнаружение опухоли с помощью ядерного магнитного резонанса». Имеются сведения, что именно он изобрёл само устройство МРТ[5][6][7]. Кроме того, ещё в 1960 году в СССР изобретатель В. А. Иванов направил в Комитет по делам изобретений и открытий заявку на изобретение, где по появившимся в начале 2000-х годов оценкам специалистов были подробно обозначены принципы метода МРТ[8][9]

. Однако авторское свидетельство «Способ определения внутреннего строения материальных объектов» № 1112266 на эту заявку, с сохранением даты приоритета её подачи, было выдано В. А. Иванову только в 1984 году[10][11][12].

Мультипликация, составленная из нескольких сечений головы человека

Используемое в методе МРТ явление ядерного магнитного резонанса (ЯМР) известно с 1938 года. Первоначально применялся термин ЯМР-томография, который после Чернобыльской аварии в 1986 году был заменён на МРТ в связи с развитием радиофобии у людей. В новом названии исчезло упоминание о «ядерном» происхождении метода, что и позволило ему войти в повседневную медицинскую практику, однако используется и первоначальное название.

Томография позволяет визуализировать с высоким качеством головной, спинной мозг и другие внутренние органы. Современные технологии МРТ делают возможным неинвазивно (без вмешательства) исследовать работу органов — измерять скорость кровотока, тока спинномозговой жидкости, определять уровень диффузии в тканях, видеть активацию коры головного мозга при функционировании органов, за которые отвечает данный участок коры (функциональная магнитно-резонансная томография — фМРТ).

Аппарат для магнито-резонансной томографии

Метод ядерного магнитного резонанса позволяет изучать организм человека на основе насыщенности тканей организма водородом и особенностей их магнитных свойств, связанных с нахождением в окружении разных атомов и молекул. Ядро водорода состоит из одного протона, который имеет спин и меняет свою пространственную ориентацию в мощном магнитном поле, а также при воздействии дополнительных полей, называемых градиентными, и внешних радиочастотных импульсов, подаваемых на специфической для протона при данном магнитном поле резонансной частоте. На основе параметров протона (спинов) и их векторных направлений, которые могут находиться только в двух противоположных фазах, а также их привязанности к магнитному моменту протона можно установить, в каких именно тканях находится тот или иной атом водорода. Иногда могут также использоваться МР-контрасты на базе гадолиния или оксидов железа

[13].

Если поместить протон во внешнее магнитное поле, то его магнитный момент будет либо сонаправлен, либо противоположно направлен магнитному полю, причём во втором случае его энергия будет выше. При воздействии на исследуемую область электромагнитным излучением определённой частоты часть протонов поменяют свой магнитный момент на противоположный, а потом вернутся в исходное положение. При этом системой сбора данных томографа регистрируется выделение энергии во время релаксации предварительно возбуждённых протонов.

Первые томографы имели индукцию магнитного поля 0,005 Тл, и качество изображений, полученных на них, было низким. Современные томографы имеют мощные источники сильного магнитного поля. В качестве таких источников применяются как электромагниты (обычно до 1—3 Тл, в некоторых случаях до 9,4 Тл), так и постоянные магниты (до 0,7 Тл). При этом, так как поле должно быть весьма сильным, применяются сверхпроводящие электромагниты, работающие в жидком гелии, а постоянные магниты пригодны только очень мощные, неодимовые. Магнитно-резонансный «отклик» тканей в МР-томографах на постоянных магнитах слабее, чем у электромагнитных, поэтому область применения постоянных магнитов ограничена. Однако постоянные магниты могут быть так называемой «открытой» конфигурации, что позволяет проводить исследования в движении, в положении стоя, а также осуществлять доступ врачей к пациенту во время исследования и проведение манипуляций (диагностических, лечебных) под контролем МРТ — так называемая интервенционная МРТ.

Для определения расположения сигнала в пространстве, помимо постоянного магнита в МР-томографе, которым может быть электромагнит, либо постоянный магнит, используются градиентные катушки, добавляющие к общему однородному магнитному полю градиентное магнитное возмущение. Это обеспечивает локализацию сигнала ядерного магнитного резонанса и точное соотношение исследуемой области и полученных данных. Действие градиента, обеспечивающего выбор среза, обеспечивает селективное возбуждение протонов именно в нужной области. Мощность и скорость действия градиентных усилителей относится к одним из наиболее важных показателей магнитно-резонансного томографа. От них во многом зависит быстродействие, разрешающая способность и соотношение сигнал/шум.

Наблюдение за работой сердца в реальном времени с применением технологий МРТ

Современные технологии и внедрение компьютерной техники обусловили возникновение такого метода, как виртуальная эндоскопия, который позволяет выполнить трёхмерное моделирование структур, визуализированных посредством КТ или МРТ. Данный метод является информативным при невозможности провести эндоскопическое исследование, например, при тяжёлой патологии сердечно-сосудистой и дыхательной систем. Метод виртуальной эндоскопии нашёл применение в ангиологии, онкологии, урологии и других областях медицины.

Результаты исследования сохраняются в лечебном учреждении в формате DICOM и могут быть переданы пациенту или использованы для исследования динамики лечения.

Перед сканированием требуется снять все металлические предметы, проверить наличие татуировок и лекарственных пластырей[14]. Продолжительность сканирования МРТ составляет обычно до 20—30 минут, но может продолжаться дольше. В частности, сканирование брюшной полости занимает больше времени, чем сканирование головного мозга.

Так как МР-томографы производят громкий шум, обязательно используется защита для ушей (беруши или наушники)[15]. Для некоторых видов исследований используется внутривенное введение контрастного вещества[14].

Перед назначением МРТ пациентам рекомендуется узнать: какую информацию даст сканирование и как это отразится на стратегии лечения, имеются ли противопоказания для МРТ, будет ли использоваться контраст и для чего. Перед началом процедуры: как долго продлится сканирование, где находится кнопка вызова и каким способом можно обратиться к персоналу во время сканирования

[14].

МР-диффузия — метод, позволяющий определять движение внутриклеточных молекул воды в тканях.

Диффузионно-взвешенная томография[править | править код]

Диффузионно-взвешенная томография — методика магнитно-резонансной томографии, основанная на регистрации скорости перемещения меченных радиоимпульсами протонов. Это позволяет характеризовать сохранность мембран клеток и состояние межклеточных пространств. Первоначальное и наиболее эффективное применение — при диагностике острого нарушения мозгового кровообращения по ишемическому типу в острейшей и острой стадиях. Сейчас активно используется в диагностике онкологических заболеваний.

Метод, позволяющий оценить прохождение крови через ткани организма.

В частности, существуют специальные характеристики, указывающие на скоростной и объёмный приток крови, проницаемость стенок сосудов, активность венозного оттока, а также другие параметры, которые позволяют дифференцировать здоровые и патологически изменённые ткани:

  • Прохождение крови через ткани мозга
  • Прохождение крови через ткани печени

Метод позволяет определить степень ишемии головного мозга и других органов.

Магнитно-резонансная спектроскопия (МРС) — метод, позволяющий определить биохимические изменения тканей при различных заболеваниях по концентрации определённых метаболитов. МР-спектры отражают относительное содержание биологически активных веществ в определённом участке ткани, что характеризует процессы метаболизма. Нарушения метаболизма возникают, как правило, до клинических проявлений заболевания, поэтому на основе данных МР-спектроскопии можно диагностировать заболевания на более ранних этапах развития.

Виды МР спектроскопии:

  • МР спектроскопия внутренних органов (in vivo)
  • МР спектроскопия биологических жидкостей (in vitro)
Артерии головного мозга

Магнитно-резонансная ангиография (МРА) — метод получения изображения просвета сосудов при помощи магнитно-резонансного томографа. Метод позволяет оценивать как анатомические, так и функциональные особенности кровотока. МРА основана на отличии сигнала от перемещающихся протонов (крови) от окружающих неподвижных тканей, что позволяет получать изображения сосудов без использования каких-либо контрастных средств — бесконтрастная ангиография (фазово-контрастная МРА и время-пролетная МРА). Для получения более чёткого изображения применяются особые контрастные вещества на основе парамагнетиков (гадолиний).

Функциональная МРТ (фМРТ) — метод картирования коры головного мозга, позволяющий определять индивидуальное местоположение и особенности областей мозга, отвечающих за движение, речь, зрение, память и другие функции, индивидуально для каждого пациента. Суть метода заключается в том, что при работе определённых отделов мозга кровоток в них усиливается. В процессе проведения ФМРТ больному предлагается выполнение определённых заданий, участки мозга с повышенным кровотоком регистрируются, и их изображение накладывается на обычную МРТ мозга.

МРТ позвоночника с вертикализацией (осевой нагрузкой)[править | править код]

Методика исследования пояснично-крестцового отдела позвоночника — МР-томография с вертикализацией. Суть исследования состоит в том, что сначала проводится традиционное МРТ-исследование позвоночника в положении лежа, а затем производится вертикализация (подъём) пациента вместе со столом томографа и магнитом. При этом на позвоночник начинает действовать сила тяжести, а соседние позвонки могут сместиться друг относительно друга и грыжа межпозвонкового диска становится более выраженной. Также этот метод исследования применяется нейрохирургами для определения уровня нестабильности позвоночника с целью обеспечения максимально надёжной фиксации. В России пока это исследование выполняется в единственном месте.

МРТ-термометрия — метод, основанный на получении резонанса от протонов водорода исследуемого объекта. Разница резонансных частот даёт информацию об абсолютной температуре тканей. Частота испускаемых радиоволн изменяется с нагреванием или охлаждением исследуемых тканей.

Эта методика увеличивает информативность МРТ исследований и позволяет повысить эффективность лечебных процедур, основанных на селективном нагревании тканей. Локальное нагревание тканей используется в лечении опухолей различного происхождения[16].

Электромагнитная совместимость с медицинской аппаратурой[править | править код]

Сочетание интенсивного магнитного поля, применяемого при МРТ-сканировании, и интенсивного радиочастотного поля предъявляет экстремальные требования к медицинскому оборудованию, используемому во время исследований. Оно должно иметь специальную конструкцию и может иметь дополнительные ограничения по использованию вблизи установки МРТ.

Существуют как относительные противопоказания, при которых проведение исследования возможно при определённых условиях, так и абсолютные, при которых исследование недопустимо.

Абсолютные противопоказания[править | править код]

Относительные противопоказания[править | править код]

  • инсулиновые насосы[17]
  • нервные стимуляторы
  • неферромагнитные имплантаты внутреннего уха
  • протезы клапанов сердца (в высоких полях, при подозрении на дисфункцию)
  • кровоостанавливающие клипсы (кроме сосудов мозга)
  • декомпенсированная сердечная недостаточность
  • первый триместр беременности (на данный момент собрано недостаточное количество доказательств отсутствия тератогенного эффекта магнитного поля, однако метод предпочтительнее рентгенографии и компьютерной томографии)
  • клаустрофобия (панические приступы во время нахождения в тоннеле аппарата могут не позволить провести исследование)
  • необходимость в физиологическом мониторинге
  • неадекватность пациента
  • тяжёлое/крайне тяжелое состояние пациента
  • наличие татуировок, выполненных с помощью красителей с содержанием металлических соединений (могут возникать ожоги[18])
  • зубные протезы и брекет-системы, так как возможны артефакты неоднородности поля.

Широко используемый в протезировании титан не является ферромагнетиком и практически безопасен при МРТ; исключение — наличие татуировок, выполненных с помощью красителей на основе соединений титана (например, на основе диоксида титана).

Дополнительным противопоказанием для МРТ является наличие кохлеарных имплантатов — протезов внутреннего уха. МРТ противопоказана при некоторых видах протезов внутреннего уха, так как в кохлеарном имплантате есть металлические части, которые содержат ферромагнитные материалы.

Если МРТ выполняется с контрастом, то добавляются следующие противопоказания:

  • Гемолитическая анемия;
  • Индивидуальная непереносимость компонентов, входящих в состав контрастного вещества;
  • Хроническая почечная недостаточность, так как в этом случае контраст может задерживаться в организме;
  • Беременность на любом сроке, так как контраст проникает через плацентарный барьер, а его влияние на плод пока плохо изучено.[19][неавторитетный источник?]
  • Haacke, E Mark; Brown, Robert F; Thompson, Michael; Venkatesan, Ramesh. Magnetic resonance imaging: Physical principles and sequence design (неопр.). — New York: J. Wiley & Sons, 1999. — ISBN 0-471-35128-8.
  • Lee SC; Kim K; Kim J; Lee S; Han Yi J; Kim SW; Ha KS; Cheong C. One micrometer resolution NMR microscopy (англ.) // J. Magn. Reson. (англ.)русск. : journal. — 2001. — June (vol. 150, no. 2). — P. 207—213. — DOI:10.1006/jmre.2001.2319. — Bibcode: 2001JMagR.150..207L. — PMID 11384182.
  • P Mansfield. NMR Imaging in Biomedicine: Supplement 2 Advances in Magnetic Resonance (англ.). — Elsevier, 1982. — ISBN 9780323154062.
  • Eiichi Fukushima. NMR in Biomedicine: The Physical Basis (неопр.). — Springer Science & Business Media, 1989. — ISBN 9780883186091.
  • Bernhard Blümich; Winfried Kuhn. Magnetic Resonance Microscopy: Methods and Applications in Materials Science, Agriculture and Biomedicine (англ.). — Wiley, 1992. — ISBN 9783527284030.
  • Peter Blümer. Spatially Resolved Magnetic Resonance: Methods, Materials, Medicine, Biology, Rheology, Geology, Ecology, Hardware (англ.) / Peter Blümler, Bernhard Blümich, Robert E. Botto, Eiichi Fukushima. — Wiley-VCH (англ.)русск., 1998. — ISBN 9783527296378.
  • Zhi-Pei Liang; Paul C. Lauterbur. Principles of Magnetic Resonance Imaging: A Signal Processing Perspective (англ.). — Wiley, 1999. — ISBN 9780780347236.
  • Franz Schmitt; Michael K. Stehling; Robert Turner. Echo-Planar Imaging: Theory, Technique and Application (англ.). — Springer Berlin Heidelberg, 1998. — ISBN 9783540631941.
  • Vadim Kuperman. Magnetic Resonance Imaging: Physical Principles and Applications (англ.). — Academic Press, 2000. — ISBN 9780080535708.
  • Bernhard Blümich. NMR Imaging of Materials (англ.). — Oxford University Press, 2000. — ISBN 9780198506836.
  • Jianming Jin. Electromagnetic Analysis and Design in Magnetic Resonance Imaging (англ.). — CRC Press, 1998. — ISBN 9780849396939.
  • Imad Akil Farhat; P. S. Belton; Graham Alan Webb; Royal Society of Chemistry (Great Britain). Magnetic Resonance in Food Science: From Molecules to Man (англ.). — Royal Society of Chemistry, 2007. — ISBN 9780854043408.

Что такое МРТ открытого и закрытого типа: методика, показания

Диагностика на томографе

Магнитно резонансная томография или сокращенно МРТ – это современный безопасный и эффективный метод диагностики, позволяющий специалистам точно определить заболевание, патологию, травму или другие нарушения в работе органов человеческого тела. Проще говоря, МРТ это сканирование, но с другим принципом действия в отличие от рентгенографии и КТ.

Магнитно резонансная томография имеет ряд преимуществ перед другими методами диагностики, а также показания и противопоказания к проведению. Предварительная расшифровка результатов исследования проводится специалистом-радиологом после процедуры. Более точное и конкретизированное объяснение результатов МРТ делается врачом с учетом данных анамнеза и клинической картины.

Принцип действия и преимущества перед другими методами диагностики

Принцип действия МРТ сканера основывается на особенностях действия магнитного поля и магнитных свойствах тканей тела. Благодаря взаимодействию ядерно-магнитного резонанса и ядер атомов водорода, во время обследования на экран компьютера выводится послойное изображение органов человеческого тела. Таким образом удается не только дифференцировать одни органы и ткани от других, но и зафиксировать наличие даже незначительных нарушений, опухолевых и воспалительных процессов.

Принцип работы МРТ позволяет точно оценить состояние мягких тканей, хрящей, мозга, органов, дисков позвоночника, связок – тех структур, которые в значительной степени состоят из жидкости. В то же время, МРТ в медицине меньше используется, если необходимо исследование костей или тканей легких, кишечника, желудка – структур, содержание воды в которых минимально.

Закрытый тип томографа

Аппарат томографии закрытого типа

Благодаря тому, как работает МРТ, можно выделить ряд преимуществ данного вида исследования перед другими:

  • В результате обследования удается получить детализированное изображение. Поэтому данная методика считается наиболее эффективной для раннего обнаружения опухолей и очагов воспаления, исследования нарушений ЦНС, опорно-двигательной системы, органов брюшной полости и малого таза, мозга, позвоночника, суставов, кровеносных сосудов.
  • Магнитная томография позволяет провести диагностику в тех местах, где КТ не эффективно из-за перекрытия обследуемого участка костными тканями или вследствие нечувствительности КТ к изменениям плотности тканей.
  • Во время процедуры не происходит ионизирующее облучение пациента.
  • Можно получить не только изображение структуры тканей, но и МРТ показания их функционривания. Например, скорость кровотока, тока спинномозговой жидкости и мозговой активности фиксируются при помощи функциональной магнитно резонансной томографии.
  • Возможность проведения контрастного МРТ. Контрастное вещество повышает диагностический потенциал процедуры.
  • МРТ открытого типа позволяют проходить обследования пациентам с боязнью замкнутого пространства.

Еще одно преимущество — при постановке диагноза практически исключены ошибки. Если пациента волнует вопрос: «Может ли МРТ ошибаться?», то ответ получается немного неоднозначным. С одной стороны данная процедура является одним из самых точных методов диагностики. С другой стороны ошибки могут произойти на этапе расшифровки результатов и постановки диагноза врачом.

Классификация современных магнитных томографов

Большинство пациентов настороженно относятся к аппаратам магнитной томографии, так как не знают чего ожидать во время процедуры и боятся, что им станет плохо в замкнутом пространстве. Для других людей стандартное исследование недоступно из-за их веса (более 150 кг.), наличия психологических расстройств или детского возраста.

Однако, не все знают, что современные ученые-технологи уже давно решили и эти проблемы, разработав разные виды томографов:

  • Сканер закрытого типа;
  • Сканер МРТ открытого типа.

В большинстве медицинских учреждений установлены стандартные аппараты МРТ закрытого типа, то есть те, где пациент во время исследования находится в «туннеле». Такое оборудование считается наиболее надежным, так как напряженность магнитного поля в них достаточно высокая.

Но в некоторых клиниках устанавливают МРТ открытого типа. Такие аппараты считаются не такими надежными из-за низкой напряженности магнитного поля. Но с каждым годом технологии совершенствуются, и томограф открытого типа уже нельзя отнести к менее информативным или недостаточно мощным. Тем более, что такой аппарат имеет следующие преимущества:

  1. Конструкция томографа не предполагает наличия задвижного стола, что позволяет обследовать пациентов со значительной массой тела.
  2. Во время исследования пациент находится не в замкнутом пространстве. Это позволяет значительно снизить психологический дискомфорт, исключить приступы паники и клаустрофобии.
  3. При некоторых травмах специфическая фиксация конечностей делает невозможным помещение пациента в томограф закрытого типа. Поэтому открытые типы МРТ – единственный способ провести диагностику возможных травм внутренних органов, мозга.

Допустимость обследования пациента на открытом или закрытом томографе значительно расширяет возможности врачей в сложных или нестандартных случаях.

Показания к проведению процедуры

Для чего делают МРТ, и в каких ситуациях такой метод исследования будет эффективным? Как уже отмечалось, магнитная томография позволяет провести диагностику широкого ряда заболеваний и состояний. Все виды МРТ исследований и показания к их проведению можно классифицировать в зависимости от обследуемых органов/систем:

  • Головной мозг: нарушение кровообращения в мозгу, подозрения на опухолевые поражения, наблюдение за состоянием мозга после хирургического вмешательства, мониторинг возможных рецидивов опухолевых процессов, подозрения на наличие очагов воспаления, эпилепсия, поражения вследствие артериальной гипертензии, травма головы.
  • Височно-нижнечелюстные суставы: диагностика состояния дисков суставов, оценка эффективности хирургического лечения, неправильный прикус, подготовка к проведению ортодонтического лечения.
  • Глаза: подозрения на наличие опухоли, травмы, воспалительные процессы, диагностика состояния слезных желез после травм.
  • Область носа, рта: гайморит, подготовительные манипуляции перед проведением пластических операций.
  • Позвоночный столб: различные дегенеративные изменения в структуре позвоночника (например, остеохондроз), защемление корешков нервов, врожденные патологии, травмы и оценка эффективности лечения после травм, подозрения на опухолевые процессы, остеопороз.
  • Кости и суставы: кости, мягкие ткани, суставы – травмы (в том числе спортивные), возрастные изменения, воспалительные процессы, подозрения на наличие опухоли, травмы мышц, сухожилий, ревматоидный артрит.
  • Брюшная полость: патология внутренних органов.
  • Органы малого таза: аденома, рак простаты, оценка распространения опухолевых поражений, предоперационная подготовка, оценка состояния мочевого пузыря, мочеточников, прямой кишки, яичников, мошонки, миома матки, аномалии развития органов малого таза.

Также в случае надобности проводят обследование сосудов головного мозга, шеи, грудной области; артерий, вен, щитовидной железы. При подозрении на наличие опухолевых поражений или метастазов может быть обследовано все тело пациента.

Также показаниями к проведению МРТ могут стать инфаркт, порок или ишемическая болезнь сердца.

Противопоказания к проведению процедуры

Многих пациентов волнует, есть ли противопоказания к МРТ. Конечно же, такие ограничения для томографии существуют, как и для любой другой медицинской манипуляции.

Весь перечень противопоказаний к проведению МРТ можно разделить на абсолютные и относительные. К абсолютным относятся наличие металлического инородного тела, протеза или электромагнитного импланта, кардиостимулятора. Если проводится МРТ с контрастированием — почечная недостаточность и аллергия на контрастное вещество.

Наличие этих факторов делает проведение процедуры абсолютно невозможным. Под относительными противопоказаниями подразумеваются состояния или обстоятельства, которые со временем могут пройти/измениться, и проведение обследования становится возможным.

Относительные противопоказания:

  1. Первые 3 месяца беременности.
  2. Психические проблемы, шизофрения, клаустрофобия, панические состояния.
  3. Тяжелые заболевания в стадии декомпенсации.
  4. Наличие у пациента татуировок, которые были выполнены с применением красителей на основе металлических соединений.
  5. Сильная боль, вследствие чего человек не может соблюдать полную неподвижность.
  6. Состояние опьянения – алкогольного или наркотического.

Является ли детский возраст пациента противопоказанием и можно ли делать МРТ детям, если да – с какого возраста? Специалисты на эти вопросы отвечают, что детский возраст не является помехой для проведения исследования. То есть делается МРТ даже новорожденным младенцам. Однако, с маленькими детьми существует другая проблема – их очень трудно заставить пребывать в неподвижном состоянии. Особенно долгое время, тем более в замкнутом пространстве. Есть несколько решений данной проблемы, например, предварительная беседа с ребенком или применение наркоза. МРТ исследование под наркозом делается и взрослым в тех случаях, когда процедуру провести крайне необходимо, но человек страдает клаустрофобией или приступами паники.

Подготовительные мероприятия

Общая подготовка к МРТ – важный этап исследования, который нельзя игнорировать. От того, насколько точно пациент будет следовать рекомендациям специалистов, зависит успешность процедуры и точность результатов.

Подготовка к исследованию начинается с обязательной консультации у терапевта. Врач уточнит данные анамнеза, проведет внешний осмотр, прояснит вопрос с противопоказаниями, подробно расскажет, как делают МРТ, даст направление на исследование конкретных проблемных зон.

Подготовка к МРТ также включает оценку собственного состояния. Пациент должен быть готов к тому, что будет находиться в замкнутом, шумном пространстве некоторое время. Если человек предполагает, что у него может начаться паника, он должен заранее заручиться поддержкой близкого человека. Родственник или супруг/а также помогут доехать домой после процедуры, если перед обследованием пациенту дадут седативные препараты для успокоения. МРТ под наркозом также требует присутствия близкого человека, который доставит пациента домой после исследования.

МРТ подготовка включает снятие (с себя и с одежды) всех металлических предметов – булавок, пирсинга, сережек и других украшений, съемных имплантов и протезов, шпилек, белья с металлическими вставками и т.д.

Перед процедурой нужно сходить в туалет, нельзя употреблять спиртное и наркотические вещества. Можно ли есть перед МРТ, принимать обычные лекарства? Да, если предстоит исследование головного мозга, суставов, глаз, носоглотки или позвоночника.

Некоторые виды томографического исследования требуют, чтобы была произведена специальная подготовка к МРТ.

Например, перед исследованием органов малого таза нужно помочиться за 3 часа до процедуры и больше этого не делать. За 60 минут перед сеансом выпить пол литра простой воды, так мочевой пузырь будет наполнен наполовину, что и требуется для правильной диагностики. Накануне вечером нужно полностью очистить кишечник с помощью клизмы или слабительного.

МРТ органов брюшной полости делается только натощак, поэтому вопрос о том, можно ли кушать перед процедурой, в данном случае не уместен. Исключения составляют ситуации, когда сеанс нельзя провести в утренние часы. В таком случае допустимо очень легко позавтракать. Очищение кишечника накануне, прием спазмолитиков за 30 минут перед сеансом – очень желательно.

Подготовка детей к исследованию на магнитном томографе

Физически детей к проведению процедуры готовят так же, как и взрослых. Если ребенок уже в таком возрасте, когда понимает, что от него хотят, и слушается родителей (6-7 лет), нужно рассказать ему, как подготовиться к МРТ самостоятельно. В случае необходимости – помочь.

Исследование головы ребенку

Подготовка ребенка к МРТ головного мозга на аппарате открытого типа

Психологическая подготовка ребенка – необходимый предварительный этап. Нужно рассказать малышу, зачем делать МРТ, что его ждет во время этой процедуры, какие ощущения могут возникнуть, как подавить негативные мысли и страхи. Также нужно предупредить ребенка о том, сколько по времени делают МРТ и о том, что все это время он должен быть максимально неподвижным.

Если родители видят, что ребенок психологически не готов, ощущает сильный страх или есть другие сопутствующие факторы (сильная боль, эпилепсия, судорожные приступы), вероятно, придется применить глубокую седацию или поверхностный наркоз.

Как проходит сеанс магнитно резонансной томографии

Для того, чтобы во время сеанса обследования не произошло никаких неожиданностей и неприятных сюрпризов, пациенту нужно приблизительно представлять себе как делают МРТ. Стандартная процедура включает следующие этапы:

  1. Пациента просят раздеться и снять с тела все посторонние предметы, включая парик, съемные протезы и слуховой аппарат, украшения и т.д. На смену врач выдаст одноразовую накидку.
  2. Пациент принимает горизонтальное положение на специальном задвижном столе. Затем стол задвигается в тоннель аппарата. С современными томографами возможны вариации этого этапа. Например, в случае использования томографа открытого типа или аппарата предполагающего сидячее положение.
  3. Сколько по времени длится МРТ, зависит от вида исследования. В среднем – от 20 до 120 минут. Все это время пациент должен поддерживать абсолютную неподвижность исследуемой области тела.
  4. Во время сеанса томографии пациент слышит шум или гудение, возможно ощущение легкой вибрации. Чтобы облегчить нахождение в замкнутом пространстве лучше закрыть глаза и максимально расслабиться.

После окончания сеанса пациента могут попросить некоторое время подождать, чтобы удостоверится, что все прошло успешно, полученных данных достаточно и дополнительные манипуляции не требуются. После этого пациенту возвращают личные вещи и одежду – сеанс магнитно резонансной томографии окончен.

Отдельного внимания требует конкретизация того, как проходит процедура МРТ в случае применения наркоза или контрастных веществ.

Особенности проведения МРТ пациентам под наркозом

МРТ под наркозом может быть двух видов:

  • Глубокая седация с применением современных лекарственных препаратов-транквилизаторов. Помогает значительно успокоить пациента, снять тревогу, купировать панические приступы.
  • Наркоз, который делается с помощью внутривенной инъекции или ингаляции. Такой метод может потребовать дополнительной вентиляции легких и подключения аппаратов наблюдения за состоянием жизненных функций.

Обычно действие наркоза проходит уже через 30-60 минут после окончания сеанса исследования. Перед наркозом нельзя есть в течение 9, а детям до 6 лет – 6 часов. Пить можно только чистую воду и чай, маленькими порциями. Прием жидкости прекратить за 2 часа до процедуры.

После наркоза покидать клинику можно только с сопровождающим, самостоятельное управление транспортным средством категорически запрещено.

Магнитно резонансная томография с контрастом

Контрастное вещество

Инжектор для введения контрастного вещества во время исследования

Что такое МРТ с контрастом? Это такая же процедура, как и стандартное МРТ, только для повышения информативности процедуры в вену пациента вводят безопасное нетоксичное вещество. В большинстве случаев это необходимо при диагностике опухолевых поражений. Таким образом удается провести наиболее развернутое исследование, детально изучить размеры опухоли, ее структуру и степень распространения.

Однако, опухоль – не единственная причина для проведения данного вида процедуры. Для обследования с контрастным усилением существует целый ряд показаний.

Противопоказания – беременность, лактация, аллергия (очень редкие случаи).

Никаких последствий и побочных реакций после сеанса томографии с контрастом пациент не испытывает.

Результаты магнитно резонансного исследования

То, что показывает МРТ, то есть результаты обследования, будут готовы в течение 1 или 2 дней. Если в организме все нормально, то результаты покажут, что все органы и ткани организма находятся на своих местах, имеют стандартные размеры, форму, структуру, плотность. Магнитно резонансная томография также покажет, что в теле нет злокачественных или доброкачественных новообразований, кровотечений, тромбов, воспалительных или инфекционных процессов.

Заключение МРТ

Рентгенологи делают заключение по МРТ исследованию

Если же врач обнаружит какие-либо нарушения – это будет отображено в заключении и истории болезни.

Подведем итоги

МРТ – самый современный, один из наиболее точных и безопасных неинвазивных методов исследования человеческого организма. Сеанс магнитной томографии абсолютно безболезненный и подходит для обследования даже маленьких детей. То, что может показать МРТ, помогает врачу диагностировать любую проблему со здоровьем или подтвердить ее отсутствие.

Как это работает. Простым языком об МРТ

Эффективные диагностические процедуры делают жизнь лучше — как медикам, так и пациентам. Первые получают больше информации, и потому поставить диагноз могут точнее, на процесс тратится меньше времени. Вторая сторона также выигрывает — как минимум сокращается путь, который человек преодолевает, посещая кабинеты врачей. Хотя над этим превалирует желание вовсе не посещать докторов, оставаясь всегда здоровым. Впрочем, это возможно лишь в идеальном мире, а мы живем в несовершенном.

Как-то мы разузнали, как работает капсульная эндоскопия, предназначенная для безболезненных диагностических процедур и исследований труднодоступных участков желудочно-кишечного тракта. На этот раз попробуем разобраться в том, как работает магнитно-резонансная томография — еще один безболезненный способ получения данных о состоянии внутренних органов и тканей человека.

Обращаем ваше внимание, что материал публикуется исключительно в познавательных целях и не является инструкцией, рекомендацией, а также официальным, научным или медицинским документом.

Содержание

Простая теория

Вначале немного простой теории. МРТ (MRI в английском языке) представляет собой способ получения послойного изображения внутренней структуры того или иного объекта. Грубо говоря, МРТ помогает добыть виртуальные срезы тканей и органов живого человека без вторжения в его тело — это так называемый неинвазивный метод.

В основе лежит явление, которое именуют ядерным магнитным резонансом (ЯМР), и в прошлом к аббревиатуре МРТ в начале добавляли букву «Я» (в английском вместо MRI говорили NMR). Но от слова «ядерный» решили избавиться по простой причине — чтобы не нервировать народ, хотя с бомбами или радиоактивными элементами периодической таблицы Менделеева ничего общего здесь нет.

Если это как-то поможет понять лежащие в основе явления процессы, речь в данном случае идет об измерении электромагнитного отклика атомных ядер, возбуждаемых электромагнитными волнами разных сочетаний (поэтому, кстати, и слышен ритмичный звук разной тональности) в постоянном магнитном поле высокой напряженности, указанной в теслах.

Напряженность поля влияет на качество получаемой картинки. Чем мощность меньше, тем более узкий спектр применимости томографов, которые, в свою очередь, подразделяются на несколько основных типов — от низкопольных до сверхвысокопольных (от слова «поле», а не «пол»).

Утверждать, что чем мощнее, тем лучше, не станем. Скажем так: чем мощнее, тем более универсальна и точна система. Но чем более она универсальна, тем выше ее цена, которая может исчисляться сотнями тысяч долларов и даже переваливать за миллион.

У низкопольных напряженность поля составляет до 0,5 Т. Считается, что такие томографы без контрастирования позволяют получить базовую информацию. Затем следуют среднепольные (1 Т), высокопольные (1,5 Т) и сверхвысокопольные (3 Т). Есть и более мощные, но обычным медучреждениям они не нужны.

«Многие спрашивают, какая разница между 3 Т и 1,5 Т? Принципиальное отличие — в детализации и четкости картинки», — пояснила заведующая кабинетом МРТ центра «Томография» Веста Короленок. В качестве примера она рассказала о пациенте с небольшой опухолью: аппарат с 1,5 Т ее не заметил, а на 3 Т патологию увидели, отправив человека в один из РНПЦ.

Есть также томографы закрытого и открытого типа. Одна из особенностей первых, которые более распространены, заключается в ограничениях по габаритам пациента — очень полный человек попросту не поместится в «трубу». Кроме того, страдающие от клаустрофобии могут чувствовать себя неуютно в замкнутом пространстве, где к тому же нельзя двигаться. Открытые томографы позволяют проводить исследования отдельных суставов, позвоночника и даже головы. Слабая сторона томографов открытого типа — более низкая разрешающая способность: все они являются низкопольными и имеют напряженность магнитного поля не более 0,35 Т.

Что делать нельзя

Попасть внутрь томографа можно, но не всем. Прежде всего туда нельзя обладателям имплантов разных типов: от кардиостимуляторов до слуховых аппаратов. Причин несколько: во-первых, магнитное поле может повредить и/или нарушить работу импланта, во-вторых, есть шанс нанести температурную или иную травму пациенту, в-третьих, наличие импланта негативно скажется на результатах сканирования.

То же касается металла в теле — «спиц» и штифтов, дроби и осколков, хирургических зажимов и подобных элементов (титановые — исключение).

В некоторых случаях при сканировании применяются контрастирующие препараты, которые дополнительно увеличивают четкость изображения. Их компоненты могут вызывать аллергию, они обычно противопоказаны беременным женщинам, а также в период лактации.

Испытано на себе

В «Томографии» установлен сверхвысокопольный Siemens Magnetom Spectra 3 T. Легким агрегат назвать нельзя: его вес в снаряженном состоянии составляет около 7,3 тонны при длине туннеля в 173 см. Система позволяет применять до 120 элементов катушек для покрытия всей анатомической зоны (например, всей центральной нервной системы). Используется фирменное программное обеспечение Siemens, которое в первую очередь влияет на качество сканирования и итогового изображения со срезами толщиной 0,5—1 мм.

Обследуемого облачают в одноразовый безразмерный костюм, в котором отправляют в жерло томографа. Человека укладывают на стол (именно так называется конструкция, которая затем скрывается в туннеле). Чтобы как-то уберечь уши от громкого звука, на голову надевают наушники, из которых звучит легкая музыка. При желании можно вооружиться собственным трек-листом или аудиокнигой.

Это удивило: какие наушники, если металлов быть не должно? Все просто — звук в наушники-воронки передается не по проводам, а по трубкам из эластичного пластика, поэтому композиции звучат как из колодца. Стоит отметить, что заглушить «напевы» томографа аксессуар способен не полностью.

Выпрыгнуть из аппарата нельзя, поэтому на всякий случай в руку пациенту вкладывают грушу (правильно — сигнальное устройство). При приступах паники или по каким-либо другим причинам достаточно сжать ее, и у рентгенолаборанта, контролирующего процесс в помещении рядом (в так называемой пультовой), сработает чрезвычайно громкая сигнализация.

«Казалось бы, все хорошо, пациента уложили, но только успели закрыть дверь, как грушу уже нажали», — рассказывает нам Веста. По ее словам, бывают люди, которые устают в процессе, а он может длиться до двух часов. Поэтому иногда делается перерыв, чтобы пациент мог передохнуть. Это в первую очередь касается такого исследования, как МРТ всего тела.

Достаточно часто встречаются и люди с клаустрофобией, паническими расстройствами. В этом случае рекомендуют узнать у специалиста обо всех этапах исследования и посмотреть сам аппарат.

Сканирование может занимать определенное время, в нашем случае оно длилось около 20 минут. Вторые 10 (или все 19) тянулись бесконечно долго — ведь шевелиться нельзя, а очень хочется. «Хьюстон, у нас проблемы», — засело в голове в момент, когда по нарастающей начал чесаться нос (а это случилось, когда я подумал: «Главное, чтобы не зачесался нос»). Но легкий ветерок из вентилятора где-то над головой помог продержаться неподвижно до конца процедуры.

Делать в туннеле ровным счетом нечего — смотреть некуда, так как почти перед носом находится катушка (?), похожая на удерживающее устройство. Остается прикрыть глаза и слушать «магнитно-резонансную музыку»: система, собирая данные, гудит и «поет» в разной тональности, но всегда ритмично (на самом деле это сверхбыстрые вибрации). Иногда она замолкает, и ты думаешь: «Все, закончилось». Но пауза, которая требуется на донастройку системы, проходит, и ритм стартует заново. Говорят, некоторые умудряются заснуть в процессе — таким можно только позавидовать.

К слову, звучание томографа зависит от задействованных типов катушек и текущей программы.

«Выехав» из туннеля, хочется вскочить и идти — из-за неподвижного положения и громкого звука возникает короткое чувство дезориентации. Главное, не торопиться (да вам и не позволят).

После всего пережитого появилось желание сделать как в кино — подойти к томографу с пистолетом (в боевиках такое показывают регулярно). Но оружия под рукой не оказалось, поэтому эксперимент остался мечтой — проверить, примагнитится ли пистолет, не получилось.


Как долго может длиться сканирование?

— В центре «Томография» — до двух часов. Это МРТ всего тела с контрастированием. Как уже говорилось выше, в таких случаях мы разбиваем исследование на части.

Меньше всего времени тратится на исследование обычных суставов, например коленных. В стандартной ситуации [без патологий] оно длится не больше 15 минут для одного сустава. Но это время непосредственного нахождения пациента в томографе без учета анализа данных.

Компания Siemens постоянно разрабатывает новое ПО. Оно позволяет сократить время для некоторых видов диагностики. Например, можно ускорить сканирование суставов — до 8 минут, а головного мозга — до 6—10. Однако новые опции в ПО требуют тщательного изучения, проработки и оптимизации существующих протоколов исследования перед внедрением.

Есть ли откровенно сложные для томографа задачи?

— При исследовании брюшной полости, например, и если мы работаем в автоматическом режиме, аппарат подстраивается под движение диафрагмы, считывая данные при определенном ее положении. Это заметно увеличивает время исследования. Процесс можно ускорить, однако пациенту придется задерживать дыхание на 20 секунд много раз. Физически это непросто.

Какие-то ограничения для аппарата при его полной укомплектованности катушками отсутствуют. Мы, к примеру, пока не смотрим сердце и не проводим исследования молочных желез. Но в этом году будут закуплены необходимые компоненты.

Почему нельзя двигаться?

— Когда человек двигается, картинка получается размытой. В некоторых случаях, чтобы получить качественное изображение, необходимо подстраивать программу работы томографа. Нам необходимо четко видеть стенки тех же позвонков, структуру — это позволяет определить наличие патологии. Когда человек двигается, теряются даже контуры, диагностика серьезно затрудняется.

При некоторых типах сканирования мелкие и редкие движения не станут проблемой, однако в определенных случаях — когда размытые сканы попали на место с грыжей или иными изменениями — мы вынуждены повторять ту или иную серию для получения четких снимков.

Зубы надо сжимать, чтобы пломбы не вылетели?

— Что касается стоматологических вопросов, то никаких противопоказаний нет. Скорее возникают технические нюансы. Если это исследование головного мозга, артефакт [пломба, штифт] может попасть в зону исследования. Мы тогда выстраиваем программу так, чтобы обойти такие места и получить изображение нужной области.

У пациентов с татуировками, сделанными около 20 лет назад, когда в чернилах было высокое содержание металлов, возможен едва заметный нагрев. Встречаются крайне чувствительные пациенты, они обычно и рассказывают о подобных вещах.

Опасения, как правило, возникают у тех, кто проходит подобную процедуру в первый раз, а также у возрастных пациентов.


ПО, катушки

По словам Весты, МРТ позволяет увидеть то, что остается за кадром рентгеновских снимков. На экране рабочей станции врача при этом выведена картинка с переломами позвонка и крестца. «Эта травма на рентгене, сделанном в поликлинике, не видна», — поясняет наша собеседница.

Помимо технической части, непосредственное влияние на процесс диагностики оказывает набор программ для исследований и анализа данных.

Аппарат снимает картинку в трех плоскостях: корональной (вдоль тела спереди назад), сагиттальной (справа налево) и аксиальной (сверху вниз). При необходимости изображение можно визуализировать в 3D-режиме.

Вначале в дело вступает набор программ (или комплекс последовательностей), обеспечивающий получение информации, — собственно, сканирование. Выбор происходит исходя из того, какая область будет изучаться: для головного мозга — свой набор, для суставов — свой и так далее. Кроме того, алгоритмы отличаются и в зависимости от возраста пациента.

В автоматическом режиме после получения данных информация передается на рабочую станцию врача. Он, «вооруженный» своим софтом, просматривает результаты, при необходимости корректирует их и работает с изображением, позволяющим увидеть всю картину в целом или ее детали, то есть перед специалистом находится точная виртуальная модель (или карта) исследуемой области, органа.

Существуют узкоспециализированные наборы программ, к которым относится, например, алгоритм перфузии. Чаще он используется при возникновении опухолей, в частности, головного мозга, предоставляя информацию, которая позволяет определить степень злокачественности.

Конечно, не весь софт будет одинаково востребован. «Например, такие исследования, как трактография (выстраивание связей нейронов в головном мозге вплоть до мельчайших клеток — получается красивая цветная объемная картинка) или функциональная МРТ, которая подсвечивает зоны мозга, задействованные при определенных движениях, интересны, но используются в основном для диагностики сложных и редких заболеваний ЦНС», — поясняет Веста.

Считается, что МРТ может заменить некоторые болезненные или вредные процедуры диагностических исследований. Конкретный пример — маммография, к которой приходится прибегать, когда УЗИ сделать нельзя по ряду факторов, в том числе из-за возрастного. Метод высокоинформативный, но крайне дискомфортный, так как требует серьезной компрессии молочной железы, а при наличии патологии это может быть очень болезненно. «Альтернативой может стать МРТ. В настоящее время в Европе МР-сканирование молочных желез вытесняет из обихода врачей-маммологов маммографию. У этого метода огромные преимущества и большие перспективы», — отмечает собеседница.

«Раньше преимущественно использовалась компьютерная томография с контрастом — это колоссальная доза облучения. А если необходимо сделать такое обследование несколько раз в течение года… Тем более все рентгеновские контрастные вещества достаточно аллергенные», — говорит Веста.

Красивая картинка

Красивая картинка, подчеркивают в центре «Томография», без квалифицированных сотрудников картинкой и остается. В Беларуси проводят обучение МРТ, но в очень ограниченных объемах: на такие курсы не попасть, врачи съезжаются со всей республики. Длятся они месяц, чего, по словам специалистов, недостаточно для такой широкой области медицины. Поэтому заинтересованные в повышении своей квалификации врачи используют все возможные источники получения информации: от специализированных научно-медицинских сайтов и сообществ до отраслевых выставок и конференций.

«Врачи, направляя пациентов на МРТ, зачастую не обозначают цель исследования, которую они должны поставить перед другим доктором — врачом-диагностом МРТ. Пишут „МРТ головного мозга“… А для чего? Что они хотят увидеть?» — говорит Эмилия Мезина, главврач центра «Томография». По ее словам, обучение медиков должно позитивно повлиять на ситуацию, сделав исследование ценным для пациента с точки зрения получения информации, ведь эта процедура не из дешевых.

Благодарим медицинский центр «Томография» за помощь в подготовке материала.

Читайте также:

Наш канал в Telegram. Присоединяйтесь!

Быстрая связь с редакцией: читайте паблик-чат Onliner и пишите нам в Viber!

Читайте нас в Дзене

Перепечатка текста и фотографий Onliner без разрешения редакции запрещена. [email protected]

Метаматериалы в МРТ / Habr

Мимо уха просвистела отвертка. С громким звоном она замерла на корпусе криостата.

Чертыхнувшись про себя, я решил взять перерыв. Откручивать болты в магнитном поле величиной 1.5 тесла, при помощи стального инструмента — так себе затея. Поле как невидимый противник постоянно пытается вырвать инструмент из рук, сориентировать его вдоль своих силовых линий и устремить как можно ближе к электронам, бегущим по замкнутому кругу из сверхпроводника. Однако, если очень нужно победить закисшие соединения многолетней давности, особо выбора нет. Я уселся за компьютер и привычно пролистал ленту новостей. «Российские ученые улучшили МРТ в 2 раза!» — гласил подозрительный заголовок.

Около года тому назад, мы разбирали магнитно-резонансный томограф и постигали суть его работы. Настоятельно рекомендую перед прочтением данной статьи, освежить в памяти тот материал.

В силу различных причин, в том числе, исторических, в России на сегодняшний день практически нет производства такого сложного оборудования, как высокопольные магнитно-резонансные томографы. Тем не менее, если вы живете в более — менее крупном городе, вы без труда найдете клиники, оказывающие такого рода услуги. При этом, парк МРТ сканеров зачастую представлен бывшим в употреблении оборудованием, завезенным когда-то из США и Европы и, если вам вдруг придется посетить клинику с МРТ, пусть вас не обманывает красивый внешний вид аппарата — ему вполне может идти второй десяток лет. Как следствие, такое оборудование бывает, что ломается, и я долгое время был одним из тех людей, что возвращал сломанные томографы в строй, дабы пациенты и дальше могли проходить диагностику, а владельцы — получать прибыль.

Пока в один из прекрасных дней, в перерыве между опасными развлечениями с магнитными полями огромной величины, я не наткнулся в ленте новостей на интересную надпись: «Русские ученые совместно с голландскими коллегами усовершенствовали технологию МРТ при помощи метаматериалов». Стоит ли говорить, что сам факт того, что в России ведут исследования, посвященные оборудованию, производство которого так и не было освоено, показался мне весьма и весьма спорным. Я решил, что это просто какой-то очередной попил грантов, разбавленный непонятными научными словечками вроде уже осточертевших всем «нанотехнологий». Поиск информации по теме работы отечественных ученых с МРТ и метаматериалами, привел меня к статье, содержащей описание простого эксперимента, который я легко мог бы повторить, благо МРТ аппарат всегда под рукой.

Картинка из статьи, посвященной усилению МРТ сигнала при помощи так называемого «метаматериала». В типичный клинический 1.5 — Тесловый аппарат вместо пациента загружается метаматериал, в виде тазика с водой, внутри которого расположены параллельные провода определенной длины. На проводах лежит объект исследования — рыба (неживая). Картинки справа — это полученные в МРТ изображения рыбы, с наложенной цветовой картой, означающей интенсивность сигнала от ядер водорода. Видно, что когда рыба лежит на проводах, сигнал гораздо лучше, чем без них. Время сканирования в обоих случаях одинаково, что доказывает повышение эффективности сканирования. В статье также заботливо была приведена

формула

для расчета длины проводов в зависимости от рабочей частоты томографа, которой я и воспользовался. Я смастерил свой метаматериал из кюветы и массива медных проводов, снабдив их пластиковыми креплениями, напечатанными на 3d принтере:

Мой первый метаматериал. Сразу же после изготовления был засунут в 1-Тесловый томограф.

Апельсин выступал в качестве объекта для сканирования.

Однако, вместо обещанного усиления сигнала, я получил кучу артефактов, совершенно портящих изображение! Негодованию моему не было предела! Доев испытуемого, я написал письмо авторам статьи, смысл которого можно свести к вопросу «Какого …?».

Авторы довольно скоро ответили мне. Они были весьма впечатлены тем, что кто-то пытается повторить их эксперименты. Сначала долго пытались мне объяснить как все-таки работают метаматериалы, используя термины «резонансы Фабри-Перо», «собственные моды», и всякие радиочастотные поля в объеме. Потом, видимо поняв, что я совершенно не понимаю, о чем речь, они решили пригласить меня к себе в гости, чтобы я посмотрел на их разработки вживую и убедился, что это все-таки работает. Я закинул в рюкзак свой любимый паяльник и поехал в Санкт-Петербург, в национальный исследовательский университет информационных технологий, механики и оптики (как оказалось, там обучают не только программистов).

На месте меня радушно встретили, и внезапно, предложили работу, так как были впечатлены моей кюветой с проводами и им нужен был человек для создания новых. Взамен обещали подробно объяснить все что меня интересует и пройти курс обучения по радиофизике и МРТ, который стартовал по счастливой случайности именно в тот год. Моя тяга к знаниям победила, и далее, на протяжении года я обучался, делал проекты и работал, постепенно узнавая все новые и новые вещи об истории магнитного резонанса, а также состоянии современной науки в этой области, чем и поделюсь здесь.

В основе метода предполагаемого усовершенствования МРТ, и исследуемого в упомянутых научных статьях, лежат так называемые «метаматериалы». Метаматериалы, как и многие другие открытия, обязаны своим появлением неожиданным решениям, полученным на базе теоретических изысканий. Советский ученый, Виктор Веселаго, в 1967 году, работая над теоретической моделью, предположил существование материалов с отрицательным коэффициентом преломления. Как вы уже поняли, речь идет об оптике, и сей коэффициент, грубо говоря, означает, насколько изменит свое направление свет, пройдя через границу между различными средами, например воздухом и водой. В том, что это действительно так происходит, можно легко убедиться самостоятельно:

Простой эксперимент с лазерной указкой и аквариумом, демонстрирующий преломление света.

Интересный факт, который можно извлечь из такого эксперимента — луч не может преломляться в ту же сторону, откуда он упал на границу раздела, как бы экспериментатор не старался. Такой эксперимент проводили со всеми встречающимися в природе веществами, однако луч упорно преломлялся только в одну сторону. Математически это означает, что коэффициент преломления, как и составляющие его величины, диэлектрическая и магнитная проницаемость, положительны, и ни разу не наблюдалось иного. По крайней мере, до тех пор, пока В. Веселаго не решил изучить этот вопрос, и показал, что теоретически нет ни единой причины почему нельзя быть коэффициенту преломления отрицательным.

Картинка с Вики, показывающая разницу между средами с положительным и отрицательным коэффициентами преломления. Как мы видим, свет ведет себя совершенно неестественно, по сравнению с нашим бытовым опытом.

В. Веселаго долгое время пытался найти доказательства существования материалов с отрицательным коэффициентом преломления, однако поиски не увенчались успехом, и его работа была незаслуженно забыта. Лишь только в начале следующего века были искусственно созданы композитные структуры, реализующие описываемые свойства, но не в оптическом, а в более низкочастотном, микроволновом диапазоне частот. Что и стало переломным моментом, так как сама возможность существования таких материалов открывала новые перспективы. Например — создание суперлинз, способных увеличивать объекты даже меньшие, чем длина волны света. Или же — абсолютных маскирующих покрытий-невидимок, мечты всех военных. Были внесены серьезные поправки в теорию, учитывающие новые данные. Ключом к успеху оказалось использование упорядоченных структур из резонансных элементов — метаатомов, размер которых гораздо меньше длины волны излучения с которым они взаимодействуют. Упорядоченная структура из метаатомов — это искусственный композит, называемый метаматериалом.

Практическая реализация метаматериалов даже сегодня технологически сложна, так как размер резонансных частиц должен быть сопоставимо меньше длины волны электромагнитного излучения. Для оптического диапазона (где длина волны — нанометры) подобные технологии находятся на острие возможностей прогресса. Поэтому, не удивительно, что первые представители концепции метаматериалов были созданы для сравнительно более длинных электромагнитных волн из радиодиапазона (которые имеют более привычную нам длину от мм до м). Основная фишка и одновременно недостаток любого метаматериала — следствие резонансной природы составляющих его элементов. Метаматериал может проявлять свои чудо-свойства только на определенных частотах.

Ограниченных частотах.

Поэтому, например, когда в очередной раз увидите что-то типа супер-глушилки звука на основе метаматериалов, спросите, а какой диапазон частот она реально глушит.


Типичные примеры метаматериалов, позволяющих взаимодействовать с электромагнитными волнами. Структуры из проводников — ни что иное, как маленькие резонаторы, LC-контуры, формируемые пространственным положением проводников.

Немного времени прошло с момента появления концепции метаматериалов, и их первых реализаций, как люди догадались использовать их в МРТ. Основной недостаток метаматериалов — узкий рабочий диапазон не является проблемой для МРТ, где все процессы происходят практически на одной частоте магнитного резонанса ядер, лежащей в радиодиапазоне. Здесь вы своими руками можете создавать метаатомы и сразу смотреть, что получится на картинках. Одними из первых фич, которые исследователи реализовали в МРТ с использованием метаматериалов были суперлинза и эндоскопы.

На левой части под буквой а) показана суперлинза, состоящая из трехмерной решетки резонаторов на печатных платах. Каждый резонатор – это разомкнутое металлическое колечко с припаянным конденсатором, образующее LC-контур, настроенный на частоту МРТ. Ниже приведен пример размещения данной структуры из метаматериала между ног пациента, проходящего процедуру томографии и соответственно получаемые после картинки. Если вы ранее не побрезговали советом прочитать прошлую мою статью об МРТ, то вы уже знаете, что для получения изображения какого-либо участка тела пациента требуется собрать слабые, быстро затухающие сигналы ядер с помощью близко расположенной антенны – катушки.

Суперлинза из метаматериала позволяет увеличить область действия стандартной катушки. Например, визуализировать обе ноги пациента сразу вместо одной. Из плохих новостей — положение суперлинзы должно быть подобрано определенным образом для наилучшего проявления эффекта, а сама суперлинза довольно дорога в изготовлении. Если вы все еще не поняли, почему эта линза называется с приставкой супер- то оцените по фото ее размеры, а потом осознайте, что она работает с длинной волны около пяти метров!

Под буквой б) демонстрируется конструкция эндоскопа. По сути, эндоскоп для МРТ — это массив из параллельных проводов, играющий роль волновода. Он позволяет пространственно разнести регион, из которого катушка получает сигнал от ядер и саму катушку на приличное расстояние – вплоть до того, что приемная антенна может располагаться и вовсе вне криостата томографа, далеко от постоянного магнитного поля. На нижних картинках вкладки б) представлены снимки, полученные для специального заполненного жидкостью сосуда — фантома. Разница между ними в том, что изображения, подписанные «эндоскоп» были получены, когда катушка находилась на приличном расстоянии от фантома, где без эндоскопа сигналы от ядер совершенно невозможно было бы задетектировать.

Если говорить об одной из самых перспективных областей применения метаматериалов в МРТ, и наиболее близкой к своей практической реализации (в которую я и ввязался в итоге) – это создание беспроводных катушек. Стоит пояснить, что речь тут вовсе не идет о Bluetooth либо другой беспроводной технологии передачи данных. «Беспроводная» в данном случае обозначает наличие индуктивной либо емкостной связи двух резонансных структур – приемопередающей антенны, а также метаматериала. В концепции это выглядит так:

Слева показано как обычно проходит процедура МРТ: пациент лежит внутри криостата в зоне однородного статического магнитного поля. В туннеле томографа смонтирована большая антенна, называемая «птичья клетка». Антенна такой конфигурации, позволяет вращать вектор радиочастотного магнитного поля с частотой прецессии ядер водорода (для клинических машин это обычно от 40 до 120МГц в зависимости от величины статического магнитного поля от 1Т и до 3Т соответственно), заставляя их поглощать энергию, а затем излучать в ответ. Ответный сигнал от ядер очень слаб и пока он дойдет до проводников большой антенны он неизбежно затухнет. По данной причине, в МРТ для приема сигналов используют близкорасположенные локальные катушки. На картинке по центру, например, показана типичная ситуация сканирования колена. С помощью метаматериалов можно сделать резонатор, который будет индуктивно связан с птичьей клеткой. Достаточно поместить такую штуку рядом с нужным участком тела пациента и сигнал оттуда будет приниматься не хуже, чем локальной катушкой! В случае успеха реализации концепта, пациентам больше не придется путаться в проводах, и процедура МРТ диагностики станет комфортнее.

Именно такую штуку я и пытался создать вначале, заливая провода водой и пытаясь отсканировать апельсин. Провода, погруженные в воду из самой первой картинки в данной статье — ничто иное как метаатомы, каждый из которых представляет собой полуволновый диполь — одну из самых известных конструкций антенн, знакомую каждому радиолюбителю.

Погружают их в воду не для того, чтобы они не загорелись в МРТ (хотя и для этого тоже)), а для того, чтобы благодаря высокой диэлектрической проницаемости воды, сократить их резонансную длину ровно на величину, равную квадратному корню из диэлектрической проницаемости воды.

Данную фишку уже давно применяют в радиоприемниках, наматывая проволоку на кусок феррита — т.н. ферритовая антенна. Только феррит имеет высокую магнитную проницаемость, а не диэлектрическую что однако, работает также, и позволяет соответственно сократить резонансные размеры антенны. В МРТ к сожалению феррит не засунешь, т.к. он магнитный. Вода — это дешевая и доступная альтернатива.

Понятное дело, что для расчетов всех этих вещей нужно строить сложнейшие математические модели, учитывающие взаимосвязь между резонансными элементами, параметрами среды и источниками излучения… или же можно воспользоваться плодами прогресса и ПО для численного электромагнитного моделирования, с которым без труда разберется и школьник (ярчайшие примеры — CST, HFSS). ПО позволяет создать 3d модели резонаторов, антенн, электрических схем, добавлять туда людей – да, собственно, все что угодно, вопрос лишь в фантазии и доступных вычислительных мощностях. Построенные модели дробятся на сетки, в узлах которых производится решение известных уравнений Максвелла.

Вот, например моделирование радиочастотного магнитного поля внутри упомянутой ранее антенны типа птичья клетка:


UPD: И еще немного симуляций с моделью человекаМагнитное поле:




Сразу довольно наглядно становится, как вращается поле. Слева показана ситуация когда внутри антенны коробка с водой, а справа — когда та же коробка на резонаторе из проводов резонансной длины. Видно как магнитное поле значительно усиливается благодаря проводам. После освоения CST и оптимизации там своей конструкции, я еще раз сделал метаматериал, который уже действительно позволил усилить сигнал в стандартном клиническом 1.5Т МРТ томографе. Он все также представлял собой коробку (правда более красивую, из оргстекла), заполняемую водой и массив проводов. На этот раз, структура была оптимизирована с точки зрения резонансных условий а именно: подбор длины проводов, их положения, а также количества воды. Вот что получилось с помидором:

Первое сканирование помидора выполнялось на большую антенну. В итоге получился лишь шум с еле-еле проглядывающими очертаниями. Второй раз я поместил плод на свежеиспеченную резонансную конструкцию. Я не стал строить цветные карты, либо что-то подобное, так как эффект налицо. Тем самым, на своем опыте, хоть и потратив кучу времени, я доказал, что концепция работает.

Понятно, о чем вы думаете — апельсины, помидоры — это все не то, где же испытания на людях?
Они действительно были проведены:

Рука добровольца, проходящего МРТ лежит на все той же коробке. Собственно вода в коробке, так как содержит водород, также отлично видна. Усиление сигнала происходит в зоне запястья, лежащего на резонаторе, тогда как все остальные части тела видны плохо. Понятное дело, что такого же эффекта, а может и лучше, можно добиться и используя стандартные клинические катушки. Но сам факт того, что можно делать подобные штуки, просто пространственно скомбинировав воду и провода, нужным образом сочетая их, поражает воображение. Еще более удивительно, что знания об этом можно получить, благодаря исследованию, казалось бы, несвязанных явлений, таких как преломление света.

Для тех кто еще не усталНа данный момент конструкция коробки с водой уже улучшена. Теперь это просто плоская печатная плата, которая позволяет локализовать магнитное поле внешней большой антенны около себя. Причем ее рабочая зона больше чем у предшествующей конструкции:

Цветные ленточки показывают напряженность магнитного поля над структурой при возбуждении от внешнего источника электромагнитных волн. Плоская структура представляет собой типичную линию передачи, известную в радиотехнике, однако одновременно может быть рассмотрена и как метематериал для МРТ. Эта «беспроводная катушка» уже может посоревноваться со стандартными катушками по однородноости создаваемого поля на некоторой глубине в объекте сканирования:

Анимация показывает слой за слоем цветную карту сигнала внутри коробки с водой в МРТ. Цвет означает интенсивность сигналов от ядер водорода. В левом верхнем углу в качестве приемника используется сегмент стандартной катушки для сканирования спины. Левый нижний угол — когда коробка стоит на резонаторе в виде печатной платы. Справа внизу — сигнал принимает большая антенна встроенная в тоннель томографа. Я сравнил однородность сигнала в зоне, обведенной прямоугольником. На некоторой высоте, метаматериал работает лучше чем катушка в плане однородности сигнала. Для клинических задач это может быть не сильно важное достижение, зато когда речь идет о научных установках МРТ, где сканируют лабораторных мышей, это может помочь добиться прироста сигнала и снижения необходимой мощности возбуждающих радиоимпульсов.


Про «улучшили в 2 раза» в начале статьи — разумеется, это оказался очередной плод неразделенной любви журналистов к ученым, однако и сказать что это пустые исследования тоже неправильно, что подкрепляется интересом к данной теме в научных группах по всему миру. Удивительно, но работы ведут и у нас в России, хотя исходя из моего сугубо личного опыта, это скорее редкое исключение. Есть еще много нерешенных проблем связанных с применением метаматериалов в МРТ. Кроме локализации магнитных полей для получения хорошей картинки, не стоит забывать об электрических полях, приводящих к нагреву тканей, а также о поглощении тканями пациентов, проходящих обследование энергии радиочастотного поля. За этими вещами, при клиническом использовании, должен быть особый конроль, который сильно усложняется при использовании локализующих поля резонаторов. Пока метаматериалы для МРТ остаются в рамках научных исследований, но получаемые результаты уже весьма интересны и возможно в будущем процедура МРТ благодаря им изменится в лучшую сторону, став быстрее и безопаснее.

Как работает аппарат МРТ (Магнитно-Резонансной Томографии)


ОГЛАВЛЕНИЕ

Одним из наиболее результативных способов медицинского обследования, является МРТ или магнитно-резонансная томография, дающая возможность, обрести наиболее точную информацию об:

  • особенностях анатомии человеческого организма,
  • внутренних органов,
  • эндокринной системы,
  • а также возбудимости тканей.

Возможность точно определить место развития паталогического процесса и объема произошедших повреждений, становится основным преимуществом процедуры МРТ, при обнаружении злокачественных опухолей и обследования сосудов.

Что представляет из себя МРТ?

Магнитно-резонансная томография – это исключительный шанс получить точнейшие послойные изображения, области организма, которая исследуется.

Процедура МРТ заключается в стимулирувании электромагнитных волн. Образовывается внушительное магнитное поле, в которое помещается пациет (или часть тела). Затем фиксируется обратный электромагнитный сигнал, поступающий от человеческого организма на компьютер. В итоге, выстраивается изображение.

Магнитно-резонансный томограф, является аппаратом, дающим возможность достичь эффективнейшего диагностирования, определить метаморфозы в функционировании организма и осуществить высочайшее, по точности, изображение изучаемых органов, которое дает результаты, на порядок выше, нежели рентген, компьютерная томография или УЗИ.

МРТ дает возможность обнаружить онкологические заболевания и перечень других не менее опасных болезней, а также замерить быстроту кровотока и течение спинномозговой жидкости.

Аппарат МРТ дает возможность содействовать неизменному состоянию магнетизма в теле человека, при его размещении внутри устройства.
В результате чего, он осуществляет:

  • стимулирование организма с помощью электромагнитных волн, помогая смене стабильной направленности настроенных частиц;
  • приостановку электромагнитных волн и фиксацию тех же излучений, со стороны человеческого организма;
  • обрабатывание принятого сигнала и перестройка его в картинку (изображение).


За основу функционирования МРТ, взят ЯМР принцип, с последовательным обрабатыванием получаемой информации, специализированными программами.

Итоговое изображение – это совсем не фотография или фото-негатив изучаемой части тела или органа. Радиосигналы преобразовываются в высококачественное изображение среза человеческого организма, на экране монитора. Доктора видят органы в разрезе.

Магнитно-Резонансная Томография, является более точным и надежным методом диагностирования, нежели КТ (компьютерная томография), ведь при МРТ не осуществляется применение ионизирующего излучения, наоборот, применяются абсолютно безвредные для организма электромагнитные волны.

История производства и особенности устройства аппарата МРТ

Датой сотворения сего полезнейшего устройства, называют 1973 год, а одним из первых разработчиков, считается – Пол Лотербур. В одном из его трудов был четко описан факт изображения строений организма и органов, благодаря применению магнитных и радиоволн.

Однако, Лотербур не единственный изобретатель, приложивший руку к изобретению МРТ. За 27 лет до этого, Ричард Пурселл и Феликс Блох, работая в Гарвардском Университете, испытывали явление, основой которого являлось качество, характерное для атомных ядер (изначальное вбирание энергии и ее последующее «отдавание», то есть отделение с возвращением к исходному состоянию). Спустя шесть лет, за свою работу, ученые были удостоены Нобелевской премии.

Их открытие, стало, в определенном роде, прорывом для развития суждения по ЯМР.
Удивительный феномен подвергался изучению многими ученными, не только физиками, но и математиками, и химиками. Показ первого Компьютерного Томографа, с перечнем опытов, был осуществлен в 1972 году. В результате, был выявлен новейший способ диагностирования, позволяющий подробно изображать наиболее важные структуры человеческого организма.

Впоследствии, некто Лотербур, хоть и не в полной мере, но высказал принцип функционирования МРТ. Его работа стала толчком для развития и дальнейших исследований в данной отрасли.


Немало времени уделяли надзору над недоброкачественными опухолями.
Исследования, производящиеся Лотербуром, продемонстрировали: они кардинально разнятся со здоровыми клетками. Разница состоит в параметрах добываемого сигнала.

И так, можно смело утверждать, что стартом новейшей эры развития диагностирования с помощью МРТ, являются семидесятые годы прошлого века. Именно в тот период времени, Ричард Эрнст, предложил осуществление МРТ с применением особенного метода – кодирования (и радиочастотного, и фазового). Метод, который был предложен тогда, используют доктора и в наши дни. В восьмидесятом году прошлого века было продемонстрировано изображение, на создание которого было затрачено всего 5 минут, а через шесть лет, это время составляло уже 5 секунд. Стоит отметить, что качество изображения при этом, не изменилось.

Через 8 лет после первого изображения, внушительный рывок произошел и в ангиографии, дающей возможность показать кровоток человека без вспомогательного введения в кровь лекарств, выполняющих функцию контраста.

Развитие данной отрасли стало историческим моментом для современной медицины.
МРТ используется в диагностировании болезней:

  • позвоночника;
  • суставов;
  • головного и спинного мозга;
  • нижнего мозгового придатка;
  • внутренних органов;
  • парных молочных желез внешней секреции и так далее.

Потенциал открытого метода, дает возможность выявлять болезни на начальных стадиях и находить аномалии, нуждающиеся в безотлагательном лечении или в неотложном хирургическом вмешательстве.

Процедура МРТ, осуществленная на нынешнем ультрасовременном оборудовании, позволяет:

  • получить точнейшую визуализацию внутренних органов, тканей;
  • накопить нужные данные о вращении спинномозговой жидкости;
  • выявить уровень активности областей коры головного мозга;
  • отслеживать газообмен, происходящий в тканях.

МРТ значительно и в лучшую сторону отличим от прочих методов диагностирования:

  • Он не предусматривает манипуляций с хирургическими инструментами;
  • Он эффективен и безопасен;
  • Процедура достаточно распространена, доступна и необходима при изучении наиболее серьезных случаев, нуждающихся в подробном изображении случающихся в организме метаморфоз.

Принцип работы Магнитно-Резонансного Томографа (МРТ)


Процедура производится следующим образом. Пациента размещают в специализированное узкое углубление (своего рода тоннель), в котором он обязательно должен быть размещен горизонтально. Длительность процедуры составляет от четверти до половины часа.

По завершении процедуры, человеку на руки отдают изображение, которое формируется с помощью ЯМР метода – физического явления магнитного и ядерного резонанса, связанного с особенностями протонов. Благодаря радиочастотному импульсу, в образованном при помощи аппарата электромагнитном поле преобразуется излучение, превращающееся в сигнал. Затем он принимается и подвергается обработке специализированной программой для компьютера.

На монитор выводится серия изображений срезов организма. Каждый изучаемый срез, обладает индивидуальной толщиной. Этот метод отображения похож на технологию удаления всего лишнего над или под слоем. Немаловажную роль, при этом, выполняют конкретные элементы объема и части среза.

Из-за того, что тело человека на 90% состоит из жидкости, осуществляется стимулирование протонов атомов водорода. Метод МРТ, дает возможность взглянуть в организм и определить серьезность недуга без непосредственного физического вмешательства.

Устройство МРТ

Современный аппарат МРТ, состоит из таких частей:

  • магнит;
  • катушки;
  • генератор радиоимпульсов;
  • клетка Фарадея;
  • ресурс питания;
  • охладительная система;
  • системы, обрабатывающие получаемые данные.

В последующих пунктах мы изучим работу части отдельных элементов аппарата МРТ!

Магнит

Производит стабилизированное поле, которое характеризуется равномерностью и внушительной эмфазой (напряженностью). Из заключительного показателя выявляется мощность устройства. Упомянем еще раз, именно от мощности зависит то, насколько высокое качество обретет визуализация после окончания терапии.

Аппараты делятся на 4 группы:

  • Низкопольные – оснащение начального типа, сила поля менее 0.5 Тл;
  • Среднепольные – сила поля от 0,5-1 Тл;
  • Высокопольные – характеризуются великолепной скоростью обследования, хорошо просматриваемой визуализаций, даже если человек двигался при процедуре. Сила поля – 1-2 Тл;
  • Сверхвысокопольные – более 2 Тл. Применяются исключительно при исследованиях.

Также стоит отметить такие разновидности применяемых магнитов:

Постоянный магнит – производится из сплавов, имеющих, так называемые Ферромагнитные свойства. Плюсами данных элементов, являет то, что им нет необходимости понижать температуру, потому что им не нужно энергии для поддержки однородного поля. Из минусов, стоит отметить внушительную массу и незначительную напряженность. Кроме прочего, такие магниты, восприимчивы к изменениям температур.

Сверхпроводимый магнит – катушка, созданная из особого сплава. Через данную катушку, происходит пропуск огромных токов. Благодаря аппаратам с подобными катушками, в них создается внушительное по силе магнитное поле. Однако, в сравнении с предыдущим магнитом, для сверхпроводимого магнита, необходима охладительная система. Из минусов, стоит отметить значительный расход жидкого гелия при незначительных затратах энергии, внушительные затраты на эксплуатирование агрегата, экранирование в обязательном порядке. Кроме прочего, существует риск выброса жидкости для охлаждения при утрате сверх проводимых свойств.

Резистивный магнит – не нуждается в применении специализированных систем охлаждения, и могут производить относительно однородное поле для осуществления сложных испытаний. Из минусов, стоит отметить внушительную массу, составляющую около пяти тонн и повышающуюся в случае экранирования.

Передатчик

Вырабатывает колебания и импульсы радиочастот (формы прямоугольника и сложной). Данное изменение дает возможность достичь возбуждения ядер, улучшить контрастность картинки, получаемой в результате обработки данных.

Сигнал передает на переключатель, который оказывает действие на катушку, образуя магнитное поле, обладающее влиянием на спиновую систему.

Приемник

Это усилитель сигнала с высочайшей чувствительностью и незначительным шумом, который работает на сверхвысоких частотах. Получаемый отзыв видоизменяется из мГц в кГц (то есть от больших частот, к меньшим).

Прочие запчасти

Для более подробной детализации картинки несут ответственность, также, датчики регистрации, расположенные около изучаемого органа. Процедура МРТ не представляет никакой опасности для человека, осуществив излучение сообщаемой энергии, протоны перетекают в изначальное состояние.

Чтобы качество визуализации было лучше, исследуемому человеку могут ввести вещество контрастного типа на основе Gadolinium, которое не обладает побочными действиями. Вводится он при помощи шприца, который автоматизировано, подсчитывает необходимую дозу и быстроту введения препарата. Средство поступает в организм синхронно с протекающей процедурой.

Качество МРТ исследования, зависит от большого количества факторов – это и состояние магнитного поля, катушка, которая применяется, какой контрастный препарат и даже доктор, проводящий процедуру.

Преимущества МРТ:

  • высочайшая вероятность получить наиболее точную визуализацию исследуемой части тела или органа;
  • постоянно развивающееся качество диагностирования;
  • отсутствие негативных воздействий на человеческий организм;

Аппараты разнятся по силе генерируемого поля и «распахнутости» магнита. Чем выше мощность, тем скорее проводится исследование и тем лучше качество визуализации.

Открытые аппараты, обладают C-образной формой и считаются наилучшим для исследования людей, подверженных тяжелым формам клаустрофобии. Изначально они разрабатывались для осуществления вспомогательных внутри-магнитных процедур. Также, стоит отметить, что эта разновидность устройства значительно слабее, нежели закрытый аппарат.
Обследование с помощью МРТ – одно из наиболее результативных и неопасных методов диагностирования и максимально информативно для подробного изучения спинного и головного мозга, позвоночника, органов брюшной полости и малого таза.

Видео “Как устроен МРТ”:

Также предлагаем Вашему вниманию несколько видео об устройстве и приципу работы МРТ:

Что такое МРТ с контрастом? Магнитно-резонансная томография: противопоказания, показания

Что такое МРТ?

Магнитно-резонансная томография считается безопасным методом исследования, так как она не оказывает на пациента радиационного или ионизирующего излучения, поэтому является безвредной для организма. Проходить МРТ назначают как взрослым, так и маленьким детям. Как становится понятно из названия, этот метод диагностики основан на явлении ядерного магнитного резонанса.

Чтобы понять, что такое МРТ, необходимо иметь представление о том, как она работает. Суть методики заключается в том, что ядра некоторых атомов, помещенные в магнитное поле, могут поглощать электромагнитные импульсы. В дальнейшем они преобразовывают энергию в радиосигналы и по окончании импульса излучают их. Колебания могут зарегистрировать специальные приборы.

Томографы, применяемые в медицине, работают на ядрах атомов водорода, входящих в состав молекул воды, из которой на 70 % состоит организм человека. Количество жидкости в разных органах организма отличается, в результате чего в процессе сканирования ткани излучают разные сигналы. Благодаря этому, аппарат МРТ может точно:

  • визуализировать внутренние органы;
  • отличить здоровые клетки от патологических;
  • выявить любые нарушения работы органов.

Это уникальный метод диагностики, который позволяет специалистам получить высококачественные снимки практически всех структур человеческого организма. МРТ-исследование особенно точно и детально визуализирует мягкие ткани, суставы, хрящи. Инновационная методика дает возможность врачам сделать изображения структур, которые достаточно сложно получить другими методами исследований. К таким труднодоступным тканям относят те, что расположены вблизи костных структур, например:

  • межпозвоночные диски;
  • спинной и головной мозг;
  • внутреннее ухо;
  • органы малого таза;
  • связочный аппарат.

Однако менее точны на снимках изображения структур, содержащих малое количество воды. Поэтому для обследования легких или костей скелета магнитно-резонансная томография применяется очень редко.

Исследование с контрастом

Для того чтобы в ходе исследования получить более четкие снимки, пациенту перед началом процедуры назначают прием специального вещества. Такой метод диагностики получил название МРТ с контрастом. Многие люди задумываются, может ли это средство быть опасным для них. Такие сомнения абсолютно беспочвенны, так как контраст является всего лишь красильным веществом, которое позволяет подсветить и лучше визуализировать структуры организма. Применение его не несет никакой угрозы для здоровья пациента, так как средство:

  • не имеет противопоказаний;
  • быстро выводится из организма;
  • не вызывает аллергических реакций.

Зафиксированы единичные случаи появления побочных эффектов: небольшой сыпи на коже, головных болей и легкого головокружения. Согласно данным медицинской статистики, такие осложнения наблюдаются только в 0,1 % случаев и связаны с индивидуальной непереносимостью препарата. Побочные эффекты возникают крайне редко и быстро проходят.

Существует несколько типов контрастных веществ, применяющихся при МРТ с контрастом. Они различаются по составу и способу применения. Наиболее часто пациентам назначают контраст, который вводится внутривенно. В состав этого веществ входит оксид железа, помогающий получить наиболее точный снимок кровеносных сосудов. Назначается такой контраст, например, для диагностики рассеянного склероза.

Для детальной диагностики органов желудочно-кишечного тракта больного используют пероральные контрастные вещества. В основе таких средств могут быть соединения марганца и соды гадолиния. Но препарат изготавливают не только на основе подобных химических веществ. Также в качестве контраста при МРТ могут использоваться самые простые и привычные для каждого человека продукты, например, зеленый или черничный чай. Они эффективны, так как в них содержится большая концентрация марганца.

Сегодня почти 20 % всех магнитно-резонансных томографий проводится с применением контрастного вещества. Необходимость его использования определяет врач. Чаще всего назначается применение контраста при подозрениях на онкологические заболевания, патологии пищеварительного тракта, изучении мозга, а также при заболеваниях позвоночника.

Противопоказания

Пациенты, неоднократно прошедшие такое обследование и знающие, что такое МРТ, испытали на себе его эффективность. Томография абсолютно безвредна, так как не несет радиационного и ионизирующего излучения. Однако даже для этого метода диагностики есть противопоказания. Так как работа томографа основана на воздействии магнитных полей, не допускают к прохождению МРТ людей с:

  • металлическими имплантатами;
  • нейростумуляторами;
  • клипсами на сосудах;
  • клапанами сердца;
  • стоматологическими протезами.

Могут не допустить к обследованию пациентов с металлическими имплантатами, внутриматочными спиралями. Категорически не рекомендована процедура также для женщин, которые пользуются перманентной подводкой для глаз. Противопоказанием к МРТ будет наличие в теле пациента осколков от пулевых или других видов ранений.

Отказать в прохождении обследования могут людям, которые страдают от психических заболеваний и клаустрофобии. При боязни закрытого пространства человеку будет рекомендовано обследование на аппарате открытого типа. Снимки, полученные на таком томографе, возможно, не будут столь детальны и точны, как на закрытом, однако это позволит избежать пациенту приступа.

Некоторые заболевания в стадии декомпенсации могут помешать обследованию человека. Отказ могут дать пациенту, который страдает от:

  • бронхиальной астмы;
  • заболеваний сердечно-сосудистой системы;
  • сильного обезвоживания организма.

Прием некоторых лекарственных веществ, в составе которых есть бета-блокаторы, —дополнительное противопоказание для МРТ. Люди в алкогольном или наркотическом опьянении также не допускаются к прохождению исследования. Отказать могут и пациенту с нарушением или полным прекращением выделительной функции почек в случае, если его направили на прохождение магнитно-резонансной томографии с применением контрастного вещества.

Специалисты также выделяют относительные противопоказания для прохождения МРТ, которые вызывают споры среди медиков. Не рекомендуется выполнять томографию беременным женщинам на сроке вынашивания до 12 недель. Хоть исследования и не выявили никакой угрозы для внутриутробного развития плода, процедуру все же не проводят. На этом сроке беременности у малыша происходят главные процессы формирования внутренних органов и систем организма, поэтому медицинские работники не хотят рисковать. В этот период женщине предлагают для постановки диагноза использовать иные современные способы исследования.

Показания к МРТ диагностике

Как любой другой метод обследования, магнитно-резонансная томография имеет как сильные, так и слабые стороны, которые довольно многочисленны. В исследовании одних тканей она дает максимально точную информацию, а при сканировании других — менее детальную. За время применения МРТ специалисты составили список патологий, которые рекомендованы к диагностике с помощью этого метода.

В первую очередь, обследование помогает обнаружить большое количество нарушений работы головного мозга. Специалисты выделяют следующие показания к МРТ:

  • периодические обмороки;
  • частые головокружения;
  • черепно-мозговые травмы;
  • судорожные припадки;
  • снижение чувствительности лицевых нервов.

Обследование дает возможность врачам быстро обнаружить метастазы, диагностировать любые заболевания воспалительного характера. Исследование назначается не только для выявления недуга, но и для определения возможности его хирургического лечения. Непосредственно после терапии пациентов часто просят пройти повторное МРТ, результаты которого подскажут, насколько было эффективно назначенное лечение и есть ли риск появления рецидивов.

Очень часто назначается магнитно-резонансная томография людям для изучения состояния позвоночника и спинного мозга. Обследование помогает:

  • Определить врожденные и приобретенные аномалии развития позвонков.
  • Выявить такие заболевания как: остеохондроз, грыжи межпозвонковые, радикулит, артрозы межпозвоночных суставов, протрузии дисков и др.
  • Оценить состояние спинного мозга и диагностировать его защемление.
  • Выявить снижение высоты межпозвоночных дисков.
  • Определить наличие и расположение опухолевых образований.
  • Оценить степень дегенеративных изменений в позвоночнике.

В связи с этим, исследование позволяет точно диагностировать следующие патологии: протрузии и грыжи межпозвоночных дисков, остеохондроз, остеопороз, травмы спинного мозга.

Хорошие результаты дает МРТ при исследовании внутренних органов:

  • брюшной полости и забрюшинного пространства: почки, печень, поджелудочная, желчный, надпочечники, селезенка;
  • малого таза у женщин и мужчин: яичники, матка, мошонка, мочевой пузырь, простата, половой член, семявыводящие протоки, маточные трубы;
  • грудной полости: легкие, щитовидная и паращитовидные железы;
  • носоглотки: носовые пазухи, гайморовы пазухи, глотка, гортань, мягкие ткани шеи.

Подготовка к обследованию

Несомненным преимуществом магнитно-резонансной томографии является отсутствие специальной подготовки к ее прохождению, в отличие от многих других методов диагностики. Пациенту не нужно соблюдать строгих диет, отказываться от приема пищи до обследования или еще как-либо менять свой привычный ритм жизни.

Подготовка к МРТ довольно проста, и связана, в основном, с изучением врачом анамнеза больного. Специалист перед исследованием должен получить исчерпывающую информацию о состоянии здоровья пациента, поэтому он:

  • проводит опрос;
  • уточняет все перенесенные патологии;
  • изучает результаты проведенных ранее процедур.

Это необходимо для того, чтобы в ходе сканирования и анализа полученных изображений не допустить появления ошибок. Доктор обязательно расскажет пациенту, как будет проходить исследование и необходима ли подготовка к МРТ. Женщинам, которым назначено обследование, стоит помнить, что перед процедурой лучше не наносить макияж, так как косметические средства могут иметь в составе микрочастицы металла. Такие вещества способны стать причиной искажения результатов анализа.

Непосредственно перед началом процедуры больного попросят снять в себя все металлические предметы, в том числе, серьги, ремни, кольца, заколки, одежду с молниями. Больному предоставят специальный халат, который он должен будет надеть. Пациенту можно также взять с собой удобную легкую одежду, в которой он будет проходить исследование.

Если человеку назначено обследование органов брюшной полости, то возможно ему будет необходима специальная подготовка перед проведением МРТ. Больному посоветуют не употреблять пищу и воду за 5 часов до начала сканирования. Пациентам, которым необходимо изучить состояние органов малого таза, просят за час до обследования выпить литр чистой воды. Это позволит улучшить качество и точность полученных снимков. Важно помнить, что женщинам в период менструаций такое исследование проводить не рекомендуется.

Перед началом исследования позвоночного столба пациентам не нужно выполнять никаких подготовительных действий. Однако знать необходимо, что на протяжении всего сканирования придется соблюдать полную неподвижность. Это может быть достаточно сложным для некоторых пациентов с проблемами позвоночника, так как они могут испытывать серьезный дискомфорт. Больным с подобными проблемами могут назначить перед процедурой прием обезболивающих препаратов.

Что показывает МРТ?

Обследование считается наиболее эффективным для выявления заболеваний головного мозга. После изучения послойного изображения тканей врачу не составляет особого труда обнаружить:

  • васкулит;
  • повышенное внутричерепное давление;
  • инсульт;
  • аневризму;
  • инфаркт головного мозга;
  • новообразования.

Исследование позволяет найти любые воспалительные процессы, обнаружить опухоли, кисты, гематомы, ишемические зоны. При изучении результатов исследования доктор может также выявить некоторые офтальмологические заболевания. Например, МРТ-диагностика эффективна при обнаружении воспалительных процессов в структуре глаза, метастаз, что проникли в ткани органов зрения, тромбоза и травм зрительного нерва.

Исследование органов брюшной полости включает в себя изучение селезенки, желчного пузыря и протоков, поджелудочной железы, почек и надпочечников. В ходе процедуры врачи могут обнаружить следующие заболевания внутренних органов:

  • панкреатит;
  • цирроз печени;
  • добро- и злокачественные образования;
  • кисты;
  • абсцесс печени;
  • холецистит.

При изучении почек и надпочечников врачи способны выявить любые нарушения их работы, а также изучить состояние мочевыводящих путей. Даже незначительные аномалии хорошо просматриваются на снимках, которые получают в ходе МРТ-диагностики.

Изучение органов малого таза у мужчин обнаруживает простатит, везикулит, проктит, гипертрофию простаты, тератомы. Обследование таза может выявить у женщин:

  • эндометриоз;
  • миому матки;
  • аднексит;
  • кисты;
  • полипы;
  • раковые опухоли.

Магнитно-резонансная томография считается наиболее точным методом для диагностики новообразований печени. Это исследование получило название МР-панкреатохолангиография. Оно выполняется без применения контрастного вещества, помогает изучить все желчные протоки и выявить опухоль даже на начальной стадии ее развития.

Изо всех методов изучения состояния позвоночника МРТ считается наиболее точным и информативным. На снимках специалист хорошо видит мягкие волокна, которые располагаются вблизи позвоночника, все нервные окончания и сосуды. Это дает ему возможность изучить все процессы, протекающие в этой области. МРТ диагностика спины позволяет выявить:

  • смещение костных структур;
  • ревматоидный артрит;
  • сужение спинномозгового канала;
  • искривление позвоночника;
  • болезнь Бехтерева.

Кроме этого, МРТ помогает определить любые нарушения состояния сосудов и проблемы с кровообращением. Любые инфекционные поражения тканей также легко выявляются при изучении результатов сканирования.

Как проходит исследование?

Длительность магнитно-резонансной томографии может разниться. Как правило, исследование занимает от 20 до 60 минут. На длительность процедуры влияет:

  • объем исследования;
  • количество патологий и их распространенность;
  • необходимость применения контрастного вещества.

Перед началом исследования пациент обязательно должен уведомить врача, есть ли у него к МРТ противопоказания. Например, если женщина заподозрила свою беременность, то ей необходимо сказать об этом специалисту. Возможно, врач откажется от проведения сканирования или заменит его на менее рискованное.

Многие пациенты, которым назначено исследование, интересуются, как проходит МРТ. Человека укладывают на специальную кушетку, фиксируя ему ноги, голову и руки специальными мягкими ремнями. Это необходимо для того, чтобы не допустить любых непроизвольных движений во время сканирования. Даже незначительное изменение позы пациента грозит появлением на снимках неточностей и смазыванием изображения.

На протяжении всего исследования необходимо лежать абсолютно неподвижно. Для детей это требование часто невыполнимо. Поэтому, если МРТ назначено ребенку, то перед процедурой ему могут дать седативное средство или ввести в легких наркоз. Когда пациент нервничает перед процедурой, то врачи могут посоветовать ему принять успокоительное средство.

Стол, на котором лежит пациент, медленно перемещается в томограф. Прибор представляет собой большой полый цилиндр. Так как во время работы томограф издает достаточно резкие и громкие звуки, пациенту предложат использовать беруши или наушники, в которых будет играть спокойная музыка.

Результаты МРТ исследования будут готовы через несколько часов после завершения сканирования. Снимки направляют лечащему врачу или отдают пациенту на руки. Так как процедура не несет абсолютно никакого вреда здоровью, проходить ее можно многократно.

Магнитно резонансная томография что это такое?

Такое исследование как магнитно-резонансная томография, хотя и является относительно молодым методом исследования, сегодня позволяет решать многие диагностические задачи, которые не под силу другим инструментальным диагностическим методам.

Краткая характеристика

Магнитно-резонансная томография (МРТ) – это метод исследования топографо-анатомического строения тела без инвазивного вмешательства при помощи явлений ядерно-магнитного резонанса. Резонанс возникает в результате электромагнитного отклика атомов водорода в ответ на раздражение определенным сочетанием электромагнитных волн и электрического поля, создаваемых аппаратом.

Принцип работы МРТ

Принцип работы МРТ

Принцип работы МРТ очень отличается от компьютерной томографии и рентгенологических методов исследования в целом. Он не основывается на излучении каких-либо частиц – метод заключается в создании вокруг тела мощного магнитного поля. По этой причине изображение не зависит от лучей или волн, следовательно, является очень чётким.

Аппарат МРТ состоит из:

  •         Выдвижного стола для размещения пациента
  •         Сканера
  •         Магнита
  •         Градиентной катушки
  •         Радиочастотной катушки

После помещения пациента в томограф вокруг него создаётся магнитное поле. На это магнитное поле откликаются атомы водорода, имеющие один электрон. В свою очередь, электроны выстраиваются соответственно положению магнита из своего первоначального состояния. Такое состояние для них является вынужденным, поэтому после окончания действия внешних сил электроны выстраиваются в своё «привычное» положение (положение – условная характеристика, так как электрон постоянно находится в движении вокруг ядра), обусловленное действием внешних сил при отсутствии созданного магнитного поля.

Однако время, за которое атомы водорода принимают своё начальное положение, отличается в зависимости от структуры ткани. Это время (время релаксации) и фиксируется датчиками, так как сами атомы, будучи в вынужденном положении, сохраняют преданную им потенциальную энергию, которая и высвобождается за время возвращения атома в исходное состояние. Таким образом аппарат и дифференцирует различные ткани, конвертируя сигналы в изображение.

Поскольку МРТ является самым четким методом исследования, его часто применяют при невозможности увидеть и рассмотреть патологию на УЗИ и при рентгенографии. Изображения получают послойными сегментами в поперечном разрезе сверху вниз.

Многие люди считают МРТ чем-то очень новым и неизвестным, поэтому полного доверия метод пока не получил. Однако, если разобраться в его возникновении и вообще появления такого явления как магнитный резонанс, получается, что концепция метода весьма древняя. Впервые явление электромагнитного резонанса открыл Демокрит в 19 веке.

Ученый Остед в ходе случайного эксперимента заметил, что электричество способно создавать магнитное поле. Фарадей в свою очередь решил создать масштабное магнитное поле, пропустив электрический ток по прутьям, изобретение получило название «клетка Фарадея».

Основателями МРТ являются двое ученых: Ф. Блох и Э. Парсел. Они изучали ответную реакцию атомов на бомбардировку их радиочастотами и намагничиванием. Намагниченными атомы отвечали атомным звучанием (тоном). За такое открытие в 1952 году ученые получили Нобелевскую премию.

После открытия этих явлений перед учеными стояло две главные проблемы: придание аппарату мобильности и, не менее важное, обнаружение отрасли, где нужен этот аппарат. Придание МРТ аппарату мобильности оказалось весьма сложной задачей. Если думать, что сейчас он огромен, то это глубокое заблуждение. Современный аппарат МРТ 0,6*2 метра, тогда как еще в начале и ближе к середине двадцатого века его размер составлял 14*20 метров.Современный апппарат мрт

Схожий к современному МРТ аппарату его более-менее мобильный вид придал ученый Раймонд Дамадьян в 1978 году. В своем усовершенствованном томографе он начел изучать крыс и лягушек и обнаружил, что изображения получаются очень чёткими в совокупности с тем, что метод является неинвазивным.

Тогда Раймонд Дамадьян и предложил использовать МРТ в медицинских целях, а именно – он предлагал использовать такое исследование в онкологии для обнаружения локализации опухолей и опухолевых клеток. Он утверждал, что   МРТ можно довести до такого совершенства, что возможно будет изучить каждую клетку, и тогда станет возможно предотвращение заболевания на клеточном этапе.

Сильные стороны МРТ

  • Позволяет четко и точно рассмотреть структуру и патологию сосудов, тканей, суставов, органов и т.д.
  • Является неинвазивным методом диагностики, поэтому безболезненно и безопасно, в отличие от биопсии, хирургических диагностических вмешательств, инъекций, позволяет получать необходимые данные.
  • Магнитный резонанс не вреден для человека в отличие от излучения (рентгеновского), хотя чтобы вызвать магнитное поле и создать резонанс требуется рентгеновское излучение. Но в отличие от самого рентгена в магнитно-резонансной томографии лучи не проходят через тело человека, поэтому излучение в данном методе минимальное. В однократном использовании в полгода является совершенно безвредным.
  • В отличие от УЗИ возможно досконально и широко рассмотреть все органы грудной и брюшной полостей.
  • Позволяет точно определить локализацию опухоли и других патологических процессов в мозге, как в наиболее защищённом от внешних воздействий (в том числе и диагностических) органе.
  • В проведении процедуры максимально исключается человеческий фактор.
  • Контрастирование в МРТ является относительно безопасным – контрастное вещество (гадолиний) практически не вызывает аллергических реакций.

Слабые стороны МРТ

  • В исследованиях головного мозга может указать только локализацию и структуру образование, и никак не покажет нарушение функции мозговой активности, то есть метод, по большей части, позволяет выявлять только органические патологии.
  • Имеет множество противопоказаний, хоть и является максимально безвредным методом исследования.
  • Чаще всего используются МРТ аппараты закрытого типа. В связи с этим открывается такой человеческий фактор как боязнь замкнутого помещения. Даже человек, не страдающий данным недугом, чувствует дискомфорт от получасового сеанса в «ящике».
  •  МРТ хотя и не оказывает никакого вреда на тело человека, однако может повредить имплантированные металлические аппараты, нагревать их, что может привести к ожогу рядом расположенных тканей. Также магнитное поле может вывести из строя кардиостимулятор, что приведет к нарушению сердечного ритма, который устанавливал или поддерживал аппарат. Может привести к смещению металлических скоб с сосудов головного мозга, что может закончиться весьма плачевно.

Сферы применения

Магнитно-резонансная томография стала весомым открытием для медицины и быстро получила свое признание.  Аппарат отлично рассматривает любые ткани организма с высокой точностью, качеством и показательностью.  Благодаря этому магнитно-резонансная томография может использоваться в любой отрасли медицины.МРТ снимок головного мозга

Самое незаменимое значение все же аппарат получил в таких сферах как:

МРТ головы и головного мозга

  • При внешних признаках и инструментальных подтверждениях инсульта
  • Поиск и определение локализации опухолей головного мозга
  • При врожденных патологиях развития мозга, гидроцефалии. Проводится постоянный мониторинг состояния органа.
  • Аневризмы сосудов головного мозга
  • Нарушение функции органов чувств (потеря зрения, слуха и т.д.)
  • Нарушение эндокринной функции и структурной целостности гипофиза и гипоталамуса.
  • Приступы мигрени
  • Рассеянный склероз и другие неврологические заболевания

МРТ всех отделов позвоночника

  • Остеохондроз (сужение межпозвонкового просвета и деформация позвонков приводящая к ригидности позвоночника)
  • Протрузии межпозвоночных дисков
  • Грыжи межпозвоночных дисков (грыжи и протрузии чаще появляются в поясничном отделе позвоночника)
  • Спондилоз
  • Спондилоартроз
  • Сколиоз
  • Кифоз
  • Лордоз
  • Листез
  • Метастазы опухолей или инфекционных агентов (например, туберкулёзная палочка) в тела позвонков (губчатое вещество костей хорошо задерживает метастазы) Грыжа на снимке МРТ в поясничном отделе позвоночника

    Снимок МРТ поясничного отдела позвоночника, На снимке грыжа.

МРТ Костей и суставов

  • При разрыве внутрисуставного связочного аппарата коленного сустава, разрыв мениска
  •  Ревматоидный артрит
  •  Остеомиелит
  •  Ишемические некрозы кости
  •  Остеосаркома и другие онкологические образования костей и суставо

Сосуды

  • Аневризмы
  • Нарушение кровообращения в органе или определенном участке тела
  •  Опухоли Снимок сосудов головного мозга при мрт ангиографии

    Снимок сосудов головного мозга при мрт ангиографии

Опухоли

До сих пор, каким и задумывалось предназначение магнитно-резонансной томографии, аппарат так и остался идеальным для нахождения и определения локализации опухоли в любом органе или системе. Поэтому важнейшей сферой использования МРТ аппарат является онкология.

Показания к МРТ

Как уже было сказано, магнитно-резонансная томография является очень надёжным методом диагностики состояния человека, однако же прибегают к нему не всегда. Большинство заболеваний как хирургического, так и терапевтического профиля не требуют такого уровня дифференцировки, которое может давать магнитно-резонансная томография, и её можно заменить на ультразвуковое исследование, рентгенографию, даже неинструментальные методы диагностики иногда дают необходимые данные для, как минимум, начала лечения и ведения пациента. Поэтому магнитно-резонансная томография чаще всего используется в неясных ситуациях или для уточнения локализации процесса.

  • Выяснение наличия и уточнение локализации опухолей.
  • Патологии суставов, позвоночника, других костей.
  • Патологии центральной нервной системы, в том числе и черепно-мозговые травмы (хотя преимущество отдаётся в случае травмы компьютерной томографии, которая лучше визуализирует костную ткань на фоне мягких тканей).
  • Состояние органов средостения.
  • Патологии глаз, внутреннего уха

В других случаях МРТ проводится в совокупности с КТ, УЗИ и другими инструментальными методами, часто после них.

Заключение

Магнитно-резонансная томография занимает всё более важное место в современном диагностическом процессе. Метод совершенствуется, создаются условия для максимального исключения противопоказаний.