Кт к – Что такое РКТ в медицине? Рентгеновская компьютерная томография: показания к проведению исследования

Содержание

Компьютерная томография — Википедия

Компьютерный томограф

Компью́терная томогра́фия — метод неразрушающего послойного исследования внутреннего строения предмета, был предложен в 1972 году Годфри Хаунсфилдом и Алланом Кормаком, удостоенными за эту разработку Нобелевской премии. Метод основан на измерении и сложной компьютерной обработке разности ослабления рентгеновского излучения различными по плотности тканями. В настоящее время рентгеновская компьютерная томография является основным томографическим методом исследования внутренних органов человека с использованием рентгеновского излучения.

Появление компьютерных томографов

Первые математические алгоритмы для КТ были разработаны в 1917 году австрийским математиком И. Радоном (см. преобразование Радона). Физической основой метода является экспоненциальный закон ослабления излучения, который справедлив для чисто поглощающих сред. В рентгеновском диапазоне излучения экспоненциальный закон выполняется с высокой степенью точности, поэтому разработанные математические алгоритмы были впервые применены именно для рентгеновской компьютерной томографии.

В 1963 году американский физик А. Кормак повторно (но отличным от Радона способом) решил задачу томографического восстановления, а в 1969 году английский инженер-физик Г. Хаунсфилд из фирмы «EMI Ltd.» сконструировал «ЭМИ-сканер» — первый компьютерный рентгеновский томограф, клинические испытания которого прошли в 1971 году, — разработанный только для сканирования головы. Средства на разработку КТ были выделены фирмой EMI, в частности, благодаря высоким доходам, полученным от контракта с группой The Beatles[1].

В 1979 году «за разработку компьютерной томографии» Кормак и Хаунсфилд были удостоены Нобелевской премии по физиологии и медицине.

Предпосылки метода в истории медицины

Изображения, полученные методом рентгеновской компьютерной томографии, имеют свои аналоги в истории изучения анатомии. В частности, Николай Иванович Пирогов разработал новый метод изучения взаиморасположения органов оперирующими хирургами, получивший название

топографической анатомии. Сутью метода было изучение замороженных трупов, послойно разрезанных в различных анатомических плоскостях («анатомическая томография»). Пироговым был издан атлас под названием «Топографическая анатомия, иллюстрированная разрезами, проведёнными через замороженное тело человека в трёх направлениях». Фактически, изображения в атласе предвосхищали появление подобных изображений, полученных лучевыми томографическими методами исследования. Разумеется, современные способы получения послойных изображений имеют несравнимые преимущества: нетравматичность, позволяющая проводить прижизненную диагностику заболеваний; возможность аппаратного представления в различных анатомических плоскостях (проекциях) однократно полученных «сырых» КТ-данных, а также трёхмерной реконструкции; возможность не только оценивать размеры и взаиморасположение органов, но и детально изучать их структурные особенности и даже некоторые физиологические характеристики, основываясь на показателях рентгеновской плотности и их изменении при внутривенном контрастном усилении.

В нейрохирургии до внедрения компьютерной томографии применялись предложенные в 1918—1919 годах Уолтером Денди вентрикуло- и пневмоэнцефалография. Пневмоэнцефалография впервые позволила нейрохирургам проводить визуализацию внутричерепных новообразований с помощью рентгеновских лучей. Они проводились путём введения воздуха либо непосредственно в желудочковую систему мозга (вентрикулография) либо через поясничный прокол в субарахноидальное пространство (пневмоэнцефалография). Проведение вентрикулографии, предложенное Денди в 1918 году, имело свои ограничения, так как требовало наложения с диагностической целью фрезевого отверстия и вентрикулопункции. Пневмоэнцефалография, описанная в 1919 году, была менее инвазивным методом и широко использовалась для диагностики внутричерепных образований. Однако, как вентрикуло-, так и пневмоэнцефалография представляли из себя инвазивные методы диагностики, которые сопровождались появлением у больных интенсивных головных болей, рвоты, несли целый ряд рисков. Поэтому с внедрением компьютерной томографии они перестали применяться в клинической практике. Эти методы были заменены более безопасными КТ-вентрикулографией и КТ-цистернографией, применяемыми значительно реже, по строгим показаниям

[2], наряду с широко используемой бесконтрастной компьютерной томографией головного мозга.

Шкала Хаунсфилда

Для визуальной и количественной оценки плотности визуализируемых методом компьютерной томографии структур используется шкала ослабления рентгеновского излучения, получившая название шкалы Хаунсфилда (её визуальным отражением на мониторе аппарата является чёрно-белый спектр изображения). Диапазон единиц шкалы («денситометрических показателей, англ. Hounsfield units»), соответствующих степени ослабления рентгеновского излучения анатомическими структурами организма, составляет от −1024 до +3071, то есть 4096 чисел ослабления. Средний показатель в шкале Хаунсфилда (0 HU) соответствует плотности воды, отрицательные величины шкалы соответствуют воздуху и жировой ткани, положительные — мягким тканям, костной ткани и более плотному веществу (металл). В практическом применении измеренные показатели ослабления могут несколько отличаться на разных аппаратах.

Следует отметить, что «рентгеновская плотность» — усредненное значение поглощения тканью излучения; при оценке сложной анатомо-гистологической структуры измерение её «рентгеновской плотности» не всегда позволяет с точностью утверждать, какая ткань визуализируется (например, насыщенные жиром мягкие ткани имеют плотность, соответствующую плотности воды).

Изменение окна изображения

Обычный компьютерный монитор способен отображать до 256 оттенков серого цвета, некоторые специализированные медицинские аппараты способны показывать до 1024 оттенков. В связи со значительной шириной шкалы Хаунсфилда и неспособностью существующих мониторов отразить весь её диапазон в черно-белом спектре, используется программный перерасчет серого градиента в зависимости от интересуемого интервала шкалы. Черно-белый спектр изображения можно применять как в широком диапазоне («окне») денситометрических показателей (визуализируются структуры всех плотностей, однако невозможно различить структуры, близкие по плотности), так и в более-менее узком с заданным уровнем его центра и ширины («легочное окно», «мягкотканное окно» и т. д.; в этом случае теряется информация о структурах, плотность которых выходит за пределы диапазона, однако хорошо различимы структуры, близкие по плотности). Проще говоря, изменение центра окна и его ширины можно сравнить с изменением яркости и контрастности изображения соответственно.

Средние денситометрические показатели

КТ-снимок грудной клетки в легочном и мягкотканном окнах (на изображениях указаны параметры центра и ширины окна)
ВеществоHU
Воздух−1000
Жир−120
Вода1
Мягкие ткани+40
Кости+400 и выше

Развитие современного компьютерного томографа

Современный компьютерный томограф фирмы Siemens Medical Solutions

Современный компьютерный томограф представляет собой сложный программно-технический комплекс. Механические узлы и детали выполнены с высочайшей точностью. Для регистрации прошедшего через среду рентгеновского излучения используются сверхчувствительные детекторы. Конструкция и материалы, применяемые при их изготовлении, постоянно совершенствуются. При изготовлении компьютерного томографа предъявляются самые жесткие требования к рентгеновским излучателям. Неотъемлемой частью аппарата является обширный пакет программного обеспечения, позволяющий проводить весь спектр компьютерно-томографических исследований (КТ-исследований) с оптимальными параметрами, проводить последующую обработку и анализ КТ-изображений. Как правило, стандартный пакет программного обеспечения может быть значительно расширен с помощью узкоспециализированных программ, учитывающих особенности сферы применения каждого конкретного аппарата.

С математической точки зрения построение изображения сводится к решению системы линейных уравнений. Так, например, для получения томограммы размером 200×200 пикселей система включает 40 000 уравнений. Для решения подобных систем разработаны специализированные методы, ориентированные на параллельных вычислениях.

Поколения компьютерных томографов: от первого до четвёртого

Прогресс КТ-томографов напрямую связан с увеличением количества детекторов, то есть с увеличением числа одновременно собираемых проекций.

Аппарат 1-го поколения появился в 1973 году. КТ-аппараты первого поколения были пошаговыми. Была одна трубка, направленная на один детектор. Сканирование производилось шаг за шагом, делая по одному обороту на слой. Каждый слой обрабатывался около 4 минут.

Во 2-м поколении КТ-аппаратов использовался веерный тип конструкции. На кольце вращения напротив рентгеновской трубки устанавливалось несколько детекторов. Время обработки изображения составило 20 секунд.

3-е поколение компьютерных томографов ввело понятие спиральной компьютерной томографии. Трубка и детекторы за один шаг стола синхронно осуществляли полное вращение по часовой стрелке, что значительно уменьшило время исследования. Увеличилось и количество детекторов. Время обработки и реконструкций заметно уменьшилось.

4-е поколение имеет 1088 люминесцентных датчиков, расположенных по всему кольцу гентри. Вращается лишь рентгеновская трубка. Благодаря этому методу время вращения сократилось до 0,7 секунд. Но существенного отличия в качестве изображений с КТ-аппаратами 3-го поколения не имеет.

Спиральная компьютерная томография

Спиральная КТ используется в клинической практике с 1988 года, когда компания Siemens Medical Solutions представила первый спиральный компьютерный томограф. Спиральное сканирование заключается в одновременном выполнении двух действий: непрерывного вращения источника — рентгеновской трубки, генерирующей излучение, вокруг тела пациента, и непрерывного поступательного движения стола с пациентом вдоль продольной оси сканирования z через апертуру гентри. В этом случае траектория движения рентгеновской трубки относительно оси z — направления движения стола с телом пациента, примет форму спирали.

В отличие от последовательной КТ скорость движения стола с телом пациента может принимать произвольные значения, определяемые целями исследования. Чем выше скорость движения стола, тем больше протяженность области сканирования. Важно то, что длина пути стола за один оборот рентгеновской трубки может быть в 1,5—2 раза больше толщины томографического слоя без ухудшения пространственного разрешения изображения.

Технология спирального сканирования позволила значительно сократить время, затрачиваемое на КТ-исследование и существенно уменьшить лучевую нагрузку на пациента.

Многослойная компьютерная томография (МСКТ)

Многослойная компьютерная томография с внутривенным контрастным усилением и трёхмерной реконструкцией изображения.

Многослойная («мультиспиральная», «мультисрезовая» компьютерная томография — МСКТ) была впервые представлена компанией Elscint Co. в 1992 году. Принципиальное отличие МСКТ от спиральных томографов предыдущих поколений в том, что по окружности гентри расположены не один, а два и более ряда детекторов. Для того, чтобы рентгеновское излучение могло одновременно приниматься детекторами, расположенными на разных рядах, была разработана новая — объёмная геометрическая форма пучка.

В 1992 году появились первые двухсрезовые (двухспиральные) МСКТ с двумя рядами детекторов, а в 1998 году — четырёхсрезовые (четырёхспиральные), с четырьмя рядами детекторов соответственно. Кроме вышеотмеченных особенностей, было увеличено количество оборотов рентгеновской трубки с одного до двух в секунду. Таким образом, четырёхспиральные МСКТ пятого поколения на сегодняшний день в восемь раз быстрее, чем обычные спиральные КТ четвёртого поколения. В 2004—2005 годах были представлены 32-, 64- и 128-срезовые МСКТ, в том числе — с двумя рентгеновскими трубками. В 2007 году Toshiba вывела на рынок 320-срезовые компьютерные томографы, в 2013 году — 512- и 640-срезовые. Они позволяют не только получать изображения, но и дают возможность практически в «реальном» времени наблюдать физиологические процессы, происходящие в головном мозге и в сердце[источник не указан 1099 дней].

Особенностью подобной системы является возможность сканирования целого органа (сердце, суставы, головной мозг и т. д.) за один оборот рентгеновской трубки, что значительно сокращает время обследования, а также возможность сканировать сердце даже у пациентов, страдающих аритмиями.

Преимущества МСКТ перед обычной спиральной КТ
  • улучшение временного разрешения
  • улучшение пространственного разрешения вдоль продольной оси z
  • увеличение скорости сканирования
  • улучшение контрастного разрешения
  • увеличение отношения сигнал/шум
  • эффективное использование рентгеновской трубки
  • большая зона анатомического покрытия
  • уменьшение лучевой нагрузки на пациента

Все эти факторы значительно повышают скорость и информативность исследований.

Основным недостатком метода остается высокая лучевая нагрузка на пациента, несмотря на то, что за время существования КТ её удалось значительно снизить.

  • Улучшение временного разрешения достигается за счёт уменьшения времени исследования и количества артефактов из-за непроизвольного движения внутренних органов и пульсации крупных сосудов.
  • Улучшение пространственного разрешения вдоль продольной оси z, связано с использованием тонких (1—1,5 мм) срезов и очень тонких, субмиллиметровых (0,5 мм) срезов. Чтобы реализовать эту возможность, разработаны два типа расположения массива детекторов в МСКТ:
    • матричные детекторы (matrix detectors), имеющие одинаковую ширину вдоль продольной оси z;
    • адаптивные детекторы (adaptive detectors), имеющие неодинаковую ширину вдоль продольной оси z.

Преимущество матричного массива детекторов заключается в том, что количество детекторов в ряду можно легко увеличить для получения большего количества срезов за один оборот рентгеновской трубки. Так как в адаптивном массиве детекторов меньше количество самих элементов, то меньше и число зазоров между ними, что дает снижение лучевой нагрузки на пациента и уменьшение электронного шума. Поэтому три из четырёх мировых производителей МСКТ выбрали именно этот тип.

Все вышеотмеченные нововведения не только повышают пространственное разрешение, но благодаря специально разработанным алгоритмам реконструкции позволяют значительно уменьшить количество и размеры артефактов (посторонних элементов) КТ-изображений.

Основным преимуществом МСКТ по сравнению с односрезовой СКТ является возможность получения изотропного изображения при сканировании с субмиллиметровой толщиной среза (0,5 мм). Изотропное изображение возможно получить, если грани вокселя матрицы изображения равны, то есть воксель принимает форму куба. В этом случае пространственные разрешения в поперечной плоскости x—y и вдоль продольной оси z становятся одинаковыми.

  • Увеличение скорости сканирования достигается уменьшением времени оборота рентгеновской трубки, по сравнению с обычной спиральной КТ, в два раза — до 0,45—0,5 с.
  • Улучшение контрастного разрешения достигается вследствие увеличения дозы и скорости введения контрастных средств при проведении ангиографии или стандартных КТ-исследований, требующих контрастного усиления. Различие между артериальной и венозной фазой введения контрастного средства прослеживается более чётко.
  • Увеличение отношения сигнал/шум достигнуто благодаря конструктивным особенностям исполнения новых детекторов и используемых при этом материалов; улучшению качества исполнения электронных компонентов и плат; увеличению тока накала рентгеновской трубки до 400 мА при стандартных исследованиях или исследованиях тучных пациентов.
  • Эффективное использование рентгеновской трубки достигается за счёт меньшего времени работы трубки при стандартном исследовании. Конструкция рентгеновских трубок претерпела изменения для обеспечения лучшей устойчивости при больших центробежных силах, возникающих при вращении за время, равное или менее 0,5 с. Используются генераторы большей мощности (до 100 кВт). Конструктивные особенности исполнения рентгеновских трубок, лучшее охлаждение анода и повышение его теплоёмкости до 8 млн единиц также позволяют продлить срок службы трубок.
  • Зона анатомического покрытия увеличена благодаря одновременной реконструкции нескольких срезов полученных за время одного оборота рентгеновской трубки. Для МСКТ-установки зона анатомического покрытия зависит от количества каналов данных, шага спирали, толщины томографического слоя, времени сканирования и времени вращения рентгеновской трубки. Зона анатомического покрытия может быть в несколько раз больше за одно и то же время сканирования по сравнению с обычным спиральным компьютерным томографом.
  • Лучевая нагрузка при многослойном спиральном КТ-исследовании при сопоставимых объёмах диагностической информации меньше на 30 % по сравнению с обычным спиральным КТ-исследованием. Для этого улучшают фильтрацию спектра рентгеновского излучения и производят оптимизацию массива детекторов. Разработаны алгоритмы, позволяющие в реальном масштабе времени автоматически уменьшать ток и напряжение на рентгеновской трубке в зависимости от исследуемого органа, размеров и возраста каждого пациента.

Компьютерная томография с двумя источниками излучения

В 2005 году компанией «Siemens Medical Solutions» представлен первый аппарат с двумя источниками рентгеновского излучения (Dual Source Computed Tomography). Теоретические предпосылки к его созданию были ещё в 1979 году, но технически его реализация в тот момент была невозможна.

По сути он является одним из логичных продолжений технологии МСКТ. Дело в том, что при исследовании сердца (КТ-коронарография) необходимо получение изображений объектов, находящихся в постоянном и быстром движении, что требует очень короткого периода сканирования. В МСКТ это достигалось синхронизацией ЭКГ и обычного исследования при быстром вращении трубки. Но минимальный промежуток времени, требуемый для регистрации относительно неподвижного среза для МСКТ при времени обращения трубки, равном 0,33 с (≈3 оборота в секунду), равен 173 мс, то есть времени полуоборота трубки. Такое временное разрешение вполне достаточно для нормальной частоты сердечных сокращений (в исследованиях показана эффективность при частотах менее 65 ударов в минуту и около 80, с промежутком малой эффективности между этими показателями и при больших значениях). Некоторое время пытались увеличить скорость вращения трубки в гентри томографа. В настоящее время достигнут предел технических возможностей для её увеличения, так как при обороте трубки в 0,33 с её вес возрастает в 28 раз (перегрузки 28 g). Чтобы получить временное разрешение менее 100 мс, требуется преодоление перегрузок более чем 75 g.

Использование же двух рентгеновских трубок, расположенных под углом 90°, дает временное разрешение, равное четверти периода обращения трубки (83 мс при обороте за 0,33 с). Это позволило получать изображения сердца независимо от частоты сокращений.

Также такой аппарат имеет ещё одно значительное преимущество: каждая трубка может работать в своем режиме (при различных значениях напряжения и тока, кВ и мА соответственно). Это позволяет лучше дифференцировать на изображении близкорасположенные объекты различных плотностей. Особенно это важно при контрастировании сосудов и образований, находящихся близко от костей или металлоконструкций. Данный эффект основан на различном поглощении излучения при изменении его параметров у смеси крови и йодосодержащего контрастного вещества при неизменности этого параметра у гидроксиапатита (основа кости) или металлов.

В остальном аппараты являются обычными МСКТ-аппаратами и обладают всеми их преимуществами.

Массовое внедрение новых технологий и компьютерных вычислений позволили внедрить в практику такие методы, как виртуальная эндоскопия, в основе которых лежит РКТ и МРТ.

Контрастное усиление

Для улучшения дифференцировки органов друг от друга, а также нормальных и патологических структур, используются различные методики контрастного усиления (чаще всего, с применением йодсодержащих контрастных препаратов).

Двумя основными разновидностями введения контрастного препарата являются пероральное (пациент с определённым режимом выпивает раствор препарата) и внутривенное (производится медицинским персоналом). Главной целью первого метода является контрастирование полых органов желудочно-кишечного тракта; второй метод позволяет оценить характер накопления контрастного препарата тканями и органами через кровеносную систему. Методики внутривенного контрастного усиления во многих случаях позволяют уточнить характер выявленных патологических изменений (в том числе достаточно точно указать наличие опухолей, вплоть до предположения их гистологической структуры) на фоне окружающих их мягких тканей, а также визуализировать изменения, не выявляемые при обычном («нативном») исследовании.

В свою очередь, внутривенное контрастирование можно проводить двумя способами: «ручное» внутривенное контрастирование и болюсное контрастирование.

При первом способе контраст вводится вручную рентгенлаборантом или процедурной медсестрой, время и скорость введения не регулируются, исследование начинается после введения контрастного вещества. Этот способ применяется на «медленных» аппаратах первых поколений, при МСКТ «ручное» введение контрастного препарата уже не соответствует значительно возросшим возможностям метода.

При болюсном контрастном усилении контрастный препарат вводится внутривенно шприцем-инжектором с установленными скоростью и временем подачи вещества. Цель болюсного контрастного усиления — разграничение фаз контрастирования. Время сканирования различается на разных аппаратах, при разных скоростях введения контрастного препарата и у разных пациентов; в среднем при скорости введения препарата 4—5 мл/сек сканирование начинается примерно через 20—30 секунд после начала введения инжектором контраста, при этом визуализируется наполнение артерий (артериальная фаза контрастирования). Через 40—60 секунд аппарат повторно сканирует эту же зону для выделения портально-венозной фазы, в которую визуализируется контрастирование вен. Также выделяют отсроченную фазу (180 секунд после начала введения), при которой наблюдается выведение контрастного препарата через мочевыделительную систему.

КТ-ангиография

КТ-ангиография позволяет получить послойную серию изображений кровеносных сосудов; на основе полученных данных посредством компьютерной постобработки с 3D-реконструкцией строится трёхмерная модель кровеносной системы.

Спиральная КТ-ангиография — одно из последних достижений рентгеновской компьютерной томографии. Исследование проводится в амбулаторных условиях. В локтевую вену вводится йодсодержащий контрастный препарат в объёме около 100 мл. В момент введения контрастного вещества делают серию сканирований исследуемого участка.

КТ-перфузия

Метод, позволяющий оценить прохождение крови через ткани организма, в частности:

  • перфузию головного мозга
  • перфузию печени

Показания к компьютерной томографии

Компьютерная томография широко используется в медицине для нескольких целей:

  1. Как скрининговый тест — при следующих состояниях:
    • Головная боль (за исключением сопутствующих факторов, требующих проведения экстренной КТ)
    • Травма головы, не сопровождающаяся потерей сознания (за исключением сопутствующих факторов, требующих проведения экстренной КТ)
    • Обморок
    • Исключение рака легких.
    В случае использования компьютерной томографии для скрининга, исследование делается в плановом порядке.
  2. Для диагностики по экстренным показаниям — экстренная компьютерная томография
    • Экстренная КТ головного мозга — наиболее часто проводимая экстренная КТ, являющаяся методом выбора при следующих состояниях[3]:
      • Впервые развившийся судорожный синдром
      • Судорожный синдром с судорожным расстройством в анамнезе, в сочетании с хотя бы одним из перечисленного:
      • Травма головы, сопровождающаяся хотя бы одним из перечисленного:
      • Головная боль в сочетании с хотя бы одним из перечисленного:
        • острым, внезапным началом
        • очаговым неврологическим дефицитом
        • стойкими изменениями психического статуса
        • когнитивными нарушениями
        • предполагаемой или доказанной ВИЧ-инфекцией
        • возрастом старше 50 лет и изменением характера головной боли
      • Нарушение психического статуса в сочетании с хотя бы одним из перечисленного:
    • Подозрение на повреждение сосуда (например, расслаивающая аневризма аорты)
    • Подозрение на некоторые другие «острые» поражения полых и паренхиматозных органов (осложнения как основного заболевания, так и в результате проводимого лечения) — по клиническим показаниям, при недостаточной информативности нерадиационных методов.
  3. Компьютерная томография для плановой диагностики
    • Большинство КТ-исследований делается в плановом порядке, по направлению врача, для окончательного подтверждения диагноза. Как правило, перед проведением компьютерной томографии делаются более простые исследования — рентген, УЗИ, анализы и т. д.
  4. Для контроля результатов лечения
  5. Для проведения лечебных и диагностических манипуляций, например пункции под контролем компьютерной томографии и др.
    • Преоперативные изображения, полученные с помощью компьютерной томографии, используются в гибридных операционных во время хирургических операций.

При назначении КТ-исследования, как при назначении любых рентгенологических исследований, необходимо учитывать следующие аспекты[4]:

  • приоритетное использование альтернативных (нерадиационных) методов;
  • проведение рентгенодиагностических исследований только по клиническим показаниям;
  • выбор наиболее щадящих методов рентгенологических исследований;
  • риск отказа от рентгенологического исследования должен заведомо превышать риск от облучения при его проведении.

Окончательное решение о целесообразности, объёме и виде исследования принимает врач-рентгенолог[5].

Некоторые абсолютные и относительные противопоказания

Без контраста:

  • Беременность
  • Масса тела слишком велика для прибора

С контрастом:

Также проведение компьютерной томографии увеличивает частоту возникновения повреждений в ДНК. При проведении компьютерной томографии доза излучения оказалась в 150 раз выше, чем при однократном рентгенологическом исследовании грудной клетки[6].

См. также

Примечания

Литература

  • Cormack A. M. Early two-dimensional reconstruction and recent topics stemming from it // Nobel Lectures in Physiology or Medicine 1971—1980. — World Scientific Publishing Co., 1992. — P. 551—563
  • Hounsfield G. N. Computed Medical Imaging // Nobel Lectures in Physiology or Medicine 1971—1980. — World Scientific Publishing Co., 1992. — P. 568—586
  • Вайнберг Э. И., Клюев В. В., Курозаев В. П. Промышленная рентгеновская вычислительная томография // Приборы для неразрушающего контроля материалов и изделий: Справочник / под ред. В. В. Клюева. — 2-е изд. — M., 1986. — Т. 1.

wikipedia.green

Компьютерная томография

Что такое КТ или компьютерная томография

Компьютерная томография (КТ) или мультиспиральная компьютерная томография (МСКТ) – это современный метод диагностики, который заключается в послойном исследовании тела человека с помощью рентгеновских лучей для получения детального изображения внутренних органов и структур.

Получение изображения при КТ основано на различной плотности органов и тканей, через которые проходят рентгеновские лучи. В ходе исследования рентгеновская трубка с узким пучком рентгеновских лучей вращается вокруг пациента. Одновременно множество датчиков фиксирует малейшие изменения плотности. Информация с датчиков обрабатывается мощным компьютером, после чего поступает на монитор в виде последовательных продольных и поперечных срезов («томография» и означает буквально «изображение среза»). Чем тоньше срез, тем точнее диагностика.

В Университетской клинической больнице №2 установлено современное оборудование – компьютерный томограф высокого класса, позволяющий получать снимки высокого качества при минимальной лучевой нагрузке.

На сегодняшний день КТ является одним из основных методов диагностики и широко применяется как для постановки диагноза, так и для его уточнения. Одним из главных преимуществ компьютерной томографии является скорость проведения исследования и возможность сканирования одновременно нескольких органов. Современные томографы позволяют значительно сократить продолжительность исследования и свести облучение пациента к минимуму, получив при этом сотни срезов толщиной до 0,5 мм. Благодаря высокоточным трехмерным проекциям, которые дают возможность исследовать положение, форму, размеры и строение различных органов и структур организма, результаты, полученные при КТ исследовании – залог успеха при постановке точного диагноза, подборе наиболее эффективного лечения и планировании операции в случае необходимости.

Существенный плюс этого метода – возможность обследовать пациентов с кардиостимуляторами, искусственными сердечными клапанами, металлическими клипсами в теле и т.п., то есть тех, кому противопоказано проведение МРТ.

Компьтерная томография используется для исследования практически всех частей тела и органов: грудной клетки, брюшной полости, таза, конечностей, печени, поджелудочной железы, кишечника, почек и надпочечников, мочевого пузыря, легких, сердца, а также кровеносных сосудов, костей и позвоночника.

Спектр заболеваний, при которых необходимо данное исследование, крайне велик. В каждом отдельном случае необходимость и целесообразность данного исследования оценивается Вашим лечащим врачом.

В чем разница между КТ и МРТ

Это наиболее частый вопрос, который задают врачу-рентгенологу. КТ и МРТ – это методы диагностики. Они имеют сходства и различия. Сходство заключается во внешней схожести конструкции самих аппаратов – томографов. В их центре расположен туннель, в который заезжает стол.

Главное отличие – это абсолютно разный принцип получения изображений: КТ использует рентгеновское излучение, МРТ – магнитное поле. Какой из методов подходит именно Вам, определяет Ваш врач с учетом специфики заболевания и цели исследования.

Показания для КТ брюшной полости

  • исследование опухолей, оценка степени их прорастания в ткани и органы
  • обнаружение метастазов
  • поражение или увеличение печени
  • образования печени, селезенки, поджелудочной железы
  • подготовка к оперативному вмешательству на органах брюшной полости
  • контроль проводимого лечения
  • травмы живота
  • острые состояния (например, острый панкреатит)
  • желтуха, резкое похудение

Показания для КТ органов грудной клетки

  • воспалительные заболевания легких и средостения
  • онкологические заболевания органов грудной клетки
  • определение стадии онкологических заболеваний других органов (метастазы)
  • травмы грудной клетки
  • оценка врожденной патологии

Противопоказания к проведению КТ

Без контраста:

С контрастом:

  • аллергия на йод
  • почечная недостаточность
  • тяжелый сахарный диабет
  • беременность
  • заболевания щитовидной железы

Подготовка к КТ исследованию

Важно!

Пожалуйста, заранее приготовьте и принесите с собой все выписки, протоколы или записи (диски) предыдущих исследований. Чем большей информацией обладает врач перед исследованием, тем яснее поставленная перед ним задача. Кроме того, предыдущие результаты позволят оценить динамику заболевания.

Перед процедурой обязательно предупредите врача, если у Вас:

  • Беременность
  • Есть аллергия на медикаменты, в том числе на йод в контрастном веществе
  • Сердечно-сосудистые заболевания (например, сердечная недостаточность)
  • Сахарный диабет или Вы принимаете метформин (Глюкофаж). Возможно, Вам потребуется воздержаться от приема этого препарата за день до и в течение дня после процедуры
  • Заболевания почек
  • Бронхиальная астма
  • Установлен кардиостимулятор или инсулиновая помпа
  • Множественная миелома.
  • Было рентгеновское обследование в течение 4-х предыдущих дней с применением контрастного вещества барий (ирригоскопия) или Вы применяли лекарственные препараты, содержащие висмут. Барий и висмут, проявляясь на рентгеновской пленке, снижают качество изображения.
  • Есть боязнь замкнутых пространств (клаустрофобия). Поскольку во время процедуры придется неподвижно лежать внутри томографа, Вам могут потребоваться успокоительные (седативные) препараты. В этом случае стоит попросить кого-нибудь доставить Вас домой после процедуры

Отделение лучевой диагностики Университетской клинической больницы № 2 работает в рамках многофункциональной клиники, поэтому при подозрении на какие-либо возможные осложнения решение о проведении исследования, его виде и способах подготовки принимается совместно с врачами-специалистами (нефрологом, эндокринологом и др.).

Подготовка к КТ исследованию с внутривенным контрастированием

  • предварительно сдать анализ крови для определения уровня креатинина в крови (результаты принести с собой)
  • уточнить наличие противопоказаний для введения контрастного препарата
  • при наличии аллергических реакций или умеренного снижения фильтрационной способности почек необходимо провести медикаментозную подготовку к исследованию

Подготовка к КТ брюшной полости

Если Вам назначена компьютерная томография органов брюшной полости, с вечера накануне исследования воздержитесь от приема твердой пищи. Перед процедурой Вам могут предложить выпить контрастное вещество, а в некоторых случаях – принять легкое слабительное или сделать клизму с барием.

КТ и МСКТ органов брюшной полости проводится натощак или не ранее чем через 3-4 часа после последнего приема пищи. Допускается прием лекарств (запить небольшим количеством воды). Непосредственно перед проведением исследования в отделении Вам могут предложить выпить около 500-600 мл воды.

МСКТ исследование выполняется после предварительного контрастирования кишечника разведенным контрастным веществом. ЖКТ заполняется или в день исследования или накануне: Накануне исследования вечером выпить 0.5 литра раствора, утром (06:00-07:00) выпить оставшиеся 0.5л. Исследование проводится с наполненным мочевым пузырем. Женщинам необходимо иметь с собой гигиенический тампон.

Внимание! После рентгенологического исследования желудка, толстой кишки с барием (рентгеноскопия желудка, ирригоскопия) КТ-исследования органов брюшной полости рекомендуется проводить не ранее, чем через 5-7 дней (минимум 3 дня). В случаях экстренной необходимости – после очистительных клизм.

Подготовка к КТ легких

Для проведения компьютерной томографии легких без внутривенного контрастирования подготовки не требуется.

Как проходит исследование

Мы просим Вас прийти в отделение лучевой диагностики (9 этаж) за 10-15 минут до назначенного времени начала исследования и, обратившись в кабинет, сообщить о своем прибытии сотрудникам. Учитывая возможность экстренных исследова- ний, есть вероятность ожидания процедуры в течение некоторого времени. Опыт- ные врачи и рентген-лаборанты сделают всё, чтобы Вы чувствовали себя комфортно и безопасно на протяжении всего исследования.

Компьютерное томография – абсолютно безболезненная процедура, которая занимает не более 30 минут (включая переодевание и, при необходимости, проведение внутривенного контрастирования). Само сканирование длится несколько минут. При необходимости проведения компьютерной томографии с контрастом Вас предварительно пригласят в процедурный кабинет, и медицинская сестра установит Вам внутривенный катетер для введения контрастного вещества во время исследования.

Перед исследованием Вас попросят снять все украшения и металлические предметы, попадающие в зону сканирования, рентгенлаборант, который будет проводить процедуру, объяснит Вам правила поведения во время обследования, поможет комфортно расположиться на столе томографа.

Если исследование проводится с использованием контрастного вещества, оно может быть введено в организм пациента различными способами в зависимости от цели исследования: внутривенно – при КТ грудной клетки, брюшной полости и таза.

  • перорально – при некоторых обследованиях брюшной полости контрастное вещество необходимо выпить
  • через специальный катетер в мочевой пузырь или кишечник

Во время процедуры пациент лежит на специальном столе, соединенном с КТ-сканером, который представляет собой большой аппарат в форме кольца. Сканер вращается вокруг исследуемого участка тела пациента, делая послойные снимки соответствующего органа. При этом может быть слышен слабый гул или щелчки.

Во время процедуры постарайтесь не двигаться, так как движение Вашего тела может снизить качество изображения.

Учитывая, что компьютерный томограф излучает рентгеновские лучи, аппарат обычно расположен в специальном экранированном (защищенном) помещении. Управление аппаратом осуществляется автоматически из соседнего кабинета, в котором расположен компьютерный блок томографа, мониторы и оборудование для слежения за состоянием пациента. Врач, выполняющий исследование, Вас видит и слышит. Вы сможете разговаривать с ним через специальное переговорное устройство. Специалист может попросить Вас задержать дыхание на несколько секунд для более четкого изображения.

По полученным изображениям врач отделения лучевой диагностики дает медицинское заключение. Кроме того, результаты исследования может прокомментировать ваш лечащий врач или хирург.

Какие ощущения испытывает пациент во время процедуры КТ

Сама процедура абсолютно безболезненна. Некоторое неудобство может доставить жесткая поверхность стола, невозможность пошевелиться и температура в кабинете КТ (в кабинете может быть прохладно).

Некоторые пациенты испытывают нервозность, находясь внутри томографа. При попадании контрастного вещества в вену может появиться ощущение тепла, жара, или металлический привкус во рту. Иногда пациенты испытывают тошноту или головную боль. Обязательно сообщите врачу или рентген-лаборанту о своих ощущениях.

После КТ исследования:

Результаты КТ сканирования Вы сможете получить в виде письменного заключения, сделанного врачом лучевой диагностики, и снимков. Возможна также запись результатов исследования на CD –диск.Результаты исследования Вы ожидаете в холле около кабинета КТ. Время ожидания, зависит от сложности клинико-диагностической ситуации, всреднем, приблизительно 20-30 минут. Результаты исследования может прокомментировать врач отделения лучевой диагностики и Ваш лечащий врач.

После исследования Вы можете сразу же вернуться к обычной жизни.

Если Вам было проведено исследования с применением контрастного вещества, Вас могут попросить задержаться на некоторое время в клинике, чтобы удостовериться, чтоб Вы чувствуете себя хорошо. В течение суток после исследования необходимо пить больше жидкости; это ускорит выведение из организма контрастного вещества.

Если у Вас возникли какие-либо дополнительные вопросы, Вы хотите записаться на исследование или перенести его, а также в случае невозможности прийти на исследование, позвоните, пожалуйста, администраторам Клиники Колопроктологии по телефону: +7 (499) 686-00-16, и они помогут Вам решить все вопросы.

Записаться на прием

Записаться на прием и узнать подробную информацию о лечении в Клинике колопроктологии и малоинвазивной хирургии можно по телефону: +7 (499) 686-00-16 или через форму обратной связи

Наши специалисты

Все специалисты

proctocentr.ru

Компьютерная томография онкологических заболеваний, стоимость КТ в клинике Москвы

Компьютерная томография: это современный метод диагностики, который позволяет получить точную информацию о состоянии костей, органов и тканей пациента.

Диагностика посредством КТ представляет собой процесс получения изображения слоя малой толщины посредством обработки данных, полученных с детекторов рентгеновского излучения, путём просвечивания слоя в разных проекциях. Во время сканирования трубка осуществляет обороты вокруг объекта. Различия в плотности различных участков объекта исследования, которые встречает на своём пути излучение, вызывают изменения его интенсивности, фиксирующиеся детектором. Получаемый сигнал обрабатывается компьютерной программой, которая конструирует на его основе послойное изображение.

Одним из оснований разделения на виды является количество изображения, которое она позволяет получить за одно вращение трубки:

В зависимости от использования в процессе контрастирующего вещества, различают:

По количеству детекторов и оборотов трубки в единицу времени различают:
последовательная КТ;

По областям сканирования выделяют компьютерную томографию:

  • внутренних органов;
  • костей и суставов;
  • сосудистой системы;
  • головного и спинного мозга.
  • Каждый из видов томографии различается между собой требованиями по подготовке, необходимостью или отсутствием необходимости вводить контраст, а также режимом работы аппарата.

    Применение компьютерной томографии с контрастом обусловлено необходимостью:

    • повышения информативности полученных снимков;
    • усиления дифференциации близко расположенных органов на изображении;
    • отделения патологических и нормальных структур на снимках;
    • уточнения характера обнаруженных патологических изменений.

    Последовательная компьютерная томография

    Данный вид КТ предполагает, что, после совершения каждого оборота, рентгеновская трубка останавливается для того, чтобы вернуться в исходное положение перед началом следующего цикла. Пока трубка неподвижна, стол томографа с пациентом передвигается вперёд на определённое расстояние (так называемый “шаг стола”) для того, чтобы произвести снимок следующего среза. Толщина среза, а, соответственно, и шага, выбирается в зависимости от целей обследования. При исследовании грудной клетки и брюшной полости, время неподвижности трубки пациент использует для того, чтобы совершить выдох или вдох, и задержать дыхание для следующего снимка. Такой процесс сканирования является фрагментарным, дискретным. Он разделён на циклы, равные одному обороту трубки вокруг объекта сканирования.

    Последовательная КТ, на сегодняшний день, применяется достаточно редко. Её используют для обследования различных органов и частей тела, однако у неё есть ряд недостатков (значительная длительность, сдвиг и несоответствие томографических срезов в результате движений пациента), из-за которых её понемногу вытесняют другие разновидности компьютерной томографии – спиральная и многослойная мультиспиральная.

    Спиральная компьютерная томография:

    Его суть заключается в непрерывности двух действий: вращения рентгеновской трубки вокруг объекта исследования, и непрерывного поступательного движения стола с пациентом вдоль продольной оси сканирования сквозь апертуру гентри. Гентри включает в себя источник излучения, детекторы сигналов, а также систему, которая обеспечивает их непрерывное движение. Диаметр апертуры гентри – это глубина области объекта, на которую распространяются возможности сканирования.
    В процессе проведения этого вида томографии, движение рентгеновской трубки имеет траекторию спирали. В этом случае скорость движения стола с пациентом может принимать произвольные значения, необходимые для достижения целей исследования. Такая технология позволила уменьшить длительность процедуры, следовательно, и лучевую нагрузку на обследуемого.

    Мультиспиральная компьютерная томография:

    Основополагающее отличие такого вида компьютерной томографии состоит в количестве детекторов – по окружности гентри их может располагаться минимум 2 ряда, общим количеством до 1100-1200 штук. На данный момент аппараты позволяют получить до 640 срезов объекта за одно вращение, в результате чего появляется не только высокоточная и качественная картинка на снимках, но и возможность следить за состоянием органов в реальном времени. Существенно сократилось и время проведения процедуры – мультиспиральная компьютерная томография, длится всего 5-7 минут. Такой тип томографии предпочтителен для обследования костных тканей.

    Ещё одним фактором, определяющим дифференциацию видов КТ, является количество источников, выделяющих излучение. Совсем недавно на рынке томографов появились первые аппараты с двумя рентгеновскими трубками. Их разработка являлась закономерной необходимостью для выведения компьютерной томографии объектов, находящихся в очень быстром, непрерывном движении, например, сердца. Для достижения наибольшей результативности и объективности результатов обследования этого органа, период среза сканирования должен быть максимально коротким. Использование двух источников излучения, расположенных под углом 90 градусов, даёт возможность получать изображение сердца независимо от частоты его сокращений.
    Важное преимущество аппаратов с двумя трубками излучения – их полная “автономность” друг от друга, то есть возможность каждой из них работать в самостоятельном режиме, с различающимися значениями напряжения и тока. Благодаря этому, близко расположенные предметы разной плотности удаётся лучше дифференцировать на изображении.

    Компьютерная томография внутренних органов:

    Позволяет получить чёткие снимки и трёхмерное изображение органов грудной клетки, брюшной полости, средостения, шеи, забрюшинного пространства, малого таза, бронхов, мягких тканей.

    Компьютерная томография опорно-двигательного аппарата:

    Компьютерная томография костей и суставов сканирует состояние и функциональные нарушения в плотных костных образованиях, мышцах, суставных структурах, а также в подкожно-жировой клетчатке.

    Компьютерная томография сосудистой системы:

    Сканирование сосудистой системы человека с использованием компьютерного томографа, чаще всего, происходит с контрастированием. Такое обследование даёт возможность увидеть и проанализировать особенности строения сосудов, наличие сужений или расширений, тромбов, расслоения, аневризмы, стеноза, артерио-венозной мальформации.

    Компьютерная томография головного и спинного мозга:

    на сегодняшний день является одним из основных способов визуализации спинного и головного мозга для их исследования. Процедура даёт хорошую видимость всех структур головного мозга: мозолистого тела, больших полушарий, мозжечка, варолиева моста, гипофиза, продолговатого мозга, ликворопроводящих областей, борозд полушарий и мозжечка, а также мест выхода самых крупных мозговых нервов.
    По результатам компьютерной томографии можно определить форму, контур, структуру спинного мозга, при этом он хорошо дифференцируется от окружающего его ликвора. На снимках определяются корешки и спинно-мозговые нервы, а также сосудистая система спинного мозга.

    Достоинства компьютерной томографии:

    • В отличие от МРТ, компьютерную томографию разрешено назначать пациентам с металлическими имплантами, несъёмными протезами, внедрёнными в тело спицами, а также кардиостимуляторами.
    • Безболезненность и быстрота. В редких случаях может понадобиться, чтобы пациент находился в полости томографа дольше 15-20 минут.
    • По сравнению с обычной рентгенографией, КТ подвергает пациента гораздо меньшему уровню облучения.
      • Перед проведением компьютерной томографии необходимо знать:

        • Запрещается проводить КТ в случае беременности пациентки.
        • Поскольку при КТ-диагностике для улучшения качества изображения используются йодсодержащие контрастные препараты, то необходимо сказать заранее об имеющейся непереносимости или аллергии.
        • При наличии заболевания почек, проводится анализ для определения содержания креатинина в крови. Рекомендуется до и после процедуры выпить как можно больше жидкости для скорейшего выведения препарата из организма.
        • Взаимодействие лекарственного препарата — метформина при лечении сахарного диабета с контрастным препаратом может замедлить выведение метформина. После введения контрастного вещества необходимо на 2 дня прекратить прием метформина.
        • Содержащийся в контрастном веществе йод может нарушить метаболизм гормонов щитовидной железы. Таким образом, если пациент страдает от гиперфункции щитовидной железы, обследование с применением подобных веществ разрешается только после проведения предварительного лечения щитовидной железы.

        Применение компьютерной томографии:

        • выявление воспалений легких, исключение наличия опухоли, метастазов, легочной эмболии
        • исследование головного мозга для выявления инфаркта мозга, кровотечений или опухолей
        • визуализация сосудов, аневризм или стенозов/закупорок, стенок артерий
        • обследование после переломов, дегенеративных изменений, грыжи межпозвоночного диска, опухолей или метастазов в скелетной системе
        • диагностическое обследование почек и мочеполовых путей
        • диагностика опухолей, метастазов или воспалений желудочно-кишечного тракта
        • измерение толщины костей при остеопорозе
        • виртуальная колоноскопия (визуализация толстой кишки без эндоскопического вмешательства).

        Подготовка к КТ органов брюшной полости:

        Обычно это обследование предполагает проведение наиболее трудоемкой подготовки, которая занимает 2-3 дня.

        • Диета. Необходимо исключить из рациона продукты, способствующие брожению и избыточному газообразованию в кишечнике. К ним относятся: газированные напитки, сдоба, сладости, овощи, бобовые. Вечером накануне обследования и в день проведения процедуры (если КТ проводится во второй половине дня) рекомендуется ограничиться легкими блюдами, такими как пюре, кисель, суп. Проводится исследование натощак. Последний прием пищи перед КТ должен быть минимум за 6 часов до обследования.
        • Очищение кишечника (по необходимости). Для полного очищения кишечника от содержимого применяется препарат Фортранс. Для подготовки необходимо будет принимать раствор Фортранса по специальной схеме. Дозу препарата, требуемого для очищения кишечника, рассчитывают следующим образом: на каждые 15-20 кг веса взять 1 пакетик препарата. Таким образом, пациенту весом 60 кг понадобится 3 пакетика. 1 пакет Фортранса разводится в 1 литре воды. Раствор необходимо начать принимать вечером накануне обследования. Каждые 15 минут выпивать по стакану раствора.
        • Пероральный прием рентгеноконтрастных препаратов. Прием препарата необходимо начать задолго до начала обследования. Готовится раствор контрастного препарата (Урографина, Урофина) следующим образом: 1 ампулу препарата растворить в литре воды. Прием внутрь Урографина перед КТ брюшной полости нужно будет проводить по специальной схеме:
        • — 250 мл раствора в 18.00 вечером накануне обследования;
          — 250 мл раствора в 23.00 вечером накануне обследования;
          — 250 мл раствора за 3 часа до начала процедуры;
          — 250 мл раствора перед началом обследования.

        Врачом может быть назначена другая схема приема. Например, в некоторых случаях, когда обследовать необходимо пищевод или 12-перстную кишку, контрастный препарат потребуется принять только перед началом процедуры.

        Подготовка к КТ органов малого таза:

        • соблюдение диеты, направленной на снижение газообразования в кишечнике;
        • очистительная клизма;
        • пероральный прием контрастного препарата по схеме.
        • Особое внимание при проведении КТ малого таза уделяется степени наполнения мочевого пузыря. Чтобы получить информативный снимки органа, необходимо, чтобы мочевой пузырь был умеренно наполнен. Для этого за час до начала обследования необходимо выпить 1 литр чистой негазированной воды и не мочиться.

          Подготовка к КТ сердца:

          На обследование необходимо явиться натощак. Кроме того, придется отказаться от приема таких препаратов как Сиалис, Виагра и Левитра. Лечащий врач или врач лучевой диагностики может назначить прием бета-блокаторов – лекарственных препаратов, которые урежают пульс пациента.

          Важно: если ранее проводились такие обследования как ирригоскопия, пассаж бария по кишечнику, рентгеноскопия желудка, то необходимо будет выждать не менее 7 суток, прежде чем проводить КТ любой из областей тела с контрастным усилением.

          Почему Меланома
          Юнит Москва

          • Врачи национального медицинского исследовательского центра РФ
          • Используются цифровые технологии при скрининге рака кожи
          • Возможность проведения консультаций с израильскими врачами
          • Ведение сложных случаев методом научного консилиума
          • Пересмотр гистологических препаратов профессорами в России и Израиле

          Пн-Пт 10:00-22:00, GMT+2

          КОНФИДЕНЦИАЛЬНОСТЬ:
          мы никогда не будем рассылать спам и передавать контактные данные третьим лицам

          ПЭТ-КТ

    melanomaunit.moscow

    КТ с контрастом – что это за процедура, кому показана?

    КТ с контрастом назначается далеко не в каждом случае использования методики компьютерной томографии. Этот способ обследования является очень точным, позволяя рассмотреть даже мельчайшие опухоли, тромбы и гематомы и применяется при необходимости детализации картины заболевания.

    Что такое компьютерная томография с контрастом?

    КТ с контрастированием – исследование, предполагающее использование рентгеновского излучения в минимальных дозах, а также сопровождающееся введением специального вещества для усиления контрастности здоровых и патологически измененных тканей. КТ с контрастом выполняется в случаях, когда нужно очень четко разделять нормальные и аномальные структуры в человеческом организме. Такая дифференцировка достигается посредством усиления сигнала от больных тканей.

    Эффект контрастирования при КТ основывается на том, что большинство опухолей, особенно, злокачественных, кровоснабжается лучше, чем здоровые ткани. Поэтому контрастное вещество будет накапливаться в них, давая картину отличия от прочих тканей. Кроме того, контраст необходим для изучения состояния сосудов – вен, артерий. На снимках КТ контраст будет выделяться белым цветом, что позволит хорошо изучить этот участок.

    КТ с контрастом и онкология

    В большинстве случаев процедура рекомендуется при подозрении на онкологический процесс, либо для дифференцирования доброкачественной опухоли со злокачественной. Так, рекомендуется КТ с контрастным веществом при:

    1. Опухолях паренхиматозных органов брюшной полости и забрюшинного пространства (при раке почек, карциноме печени, поджелудочной железы, селезенки).
    2. Раке полых органов брюшины – кишечника, желчного пузыря.
    3. Образованиях грудной клетки – легких, средостения, сердца.
    4. Опухолях головного мозга и основания черепа.
    5. Новообразованиях опорно-двигательного аппарата – костей, связок, суставов, позвоночника.

    Томография с контрастированием позволит различить банальную и часто встречающуюся кисту почки от почечно-клеточного рака или доброкачественной липомы, ангиомы. При изучении состояния печени КТ поможет дифференцировать цирроз печени, доброкачественные опухоли и гепатоцеллюлярный рак.

    Применяется исследование при лимфомах – для отличия их от другого ракового заболевания (лимфогранулематоз) или от простого лимфаденита. Контрастирование позволит установить степень ракового заболевания, его распространенность, поражение регионарных лимфоузлов, наличие метастазов. Часто назначают КТ и при малигнизации доброкачественных опухолей, которая будет заметна по ряду специфических признаков (васкуляризация, увеличение в размерах и т.д.).

    Прочие показания к КТ с контрастным веществом

    Процедура весьма информативна при диагностике внутрипросветных тромбов, а также тромбированных аневризм, зон сужения тромбами аорты. Также контраст позволит детально изучить сосудистые мальформации, в том числе – перед оперативным вмешательством по поводу их удаления. Обследование даст полную картину при истончении стенок вен, варикозе глубоких вен и при тромбофлебите, а также при атеросклерозе артерий.

    Что еще покажет томография с контрастированием? Это – любые заболевания таких зон организма:

    1. Полых органов – желудка, кишечника, пищевода.
    2. Легких, бронхов и трахеи.
    3. Гортани и голосовых связок.
    4. Головного мозга, спинного мозга.
    5. Основания черепа.
    6. Всех отделов позвоночника.
    7. Костей.
    8. Челюстей.
    9. Носа и пазух.

    Контрастное вещество и способ его введения

    Для процедуры применяются различные препараты – ионные и неионные, с содержанием йода. Именно йод повышает интенсивность изображения, при этом вред от его проникновения в организм практически отсутствует. Самыми распространенными являются ионные препараты, но неионные еще более предпочтительны (их токсичность равна нулю). К ионным средствам относят Метризоат, Диатризоат, Иоксаглат, к неионным – Йопромид, Йопамидол, Йогексол и другие.

    До введения препарата врач обязательно уточняет наличие некоторых заболеваний и состояний у пациента, которые могут стать противопоказаниями к процедуре. Также в большинстве клиник до обследования пациент должен сдать ряд лабораторных анализов (биохимия крови, общий анализ, печеночные и почечные пробы). Количество контрастного вещества рассчитывается исходя из веса человека.

    Есть разные способы введения контраста, основные из них таковы:

    1. Болюсный. При болюсном способе введения в локтевую или другую вену устанавливается шприц-инжектор, у которого нормируется скорость подачи препарата.
    2. Внутривенный однократный. Препарат один раз вводится в вену обычным шприцем.
    3. Пероральный. В этом случае средство принимается через рот.
    4. Ректальный. Для сканирования кишечника контрастное вещество вводится через прямую кишку однократно.

    КТ с контрастом – все противопоказания

    Введение йодсодержащих препаратов запрещается при:

    • Тяжелой форме бронхиальной астмы и сахарного диабета
    • Аллергии на контрастное вещество
    • Гипертиреозе и ряде других болезней щитовидной железы
    • Тяжелой почечной недостаточности
    • Миеломной болезни

    Строгим противопоказанием к любой КТ является беременность, ведь исследование предполагает использование рентгеновского излучения. Относительное противопоказание – грудное вскармливание: после процедуры в течение 1-2 суток следует исключать кормление грудью. У томографа есть ограничение по весу пациента, и при выполнении КТ у людей с массой тела более 200 кг могут возникнуть сложности.

    Как часто можно делать КТ с применением контраста?

    Обычно рекомендуется не выполнять процедуру чаще, чем раз в 6 месяцев. Это ограничение связано не с применением контраста, а с получением лучевой нагрузки во время КТ. Тем не менее, эта нагрузка минимальна, и по жизненным показаниям КТ может быть проведена чаще.

    Следует помнить, что у ряда пациентов (1-3%) наблюдаются патологические реакции на введение контрастного вещества, что также может ограничить частоту выполнения процедуры. К таким реакциям относятся:

    • Отек лица
    • Одышка
    • Сыпь на теле
    • Крапивница
    • Кожный зуд
    • Бронхоспазм
    • Снижение давления
    • Тошнота
    • Рвота и т.д.

    Такие реакции считаются признаками аллергии на контрастное вещество и требуют врачебной помощи. Нормальными являются лишь легкий металлический привкус во рту, боль в области инъекции, чувство тепла в теле.

    Как проводится исследование

    Подготовка к КТ с контрастным усилением включает такие меры:

    • Не принимать пищу в течение 4-8 часов перед процедурой (в зависимости от конкретной зоны исследования)
    • Принять препарат для снижения газообразования (при обследовании органов ЖКТ)
    • Придти в удобной, свободной одежде
    • Снять все украшения из металла, съемные медицинские устройства

    Пациента укладывают на кушетку, вводят ему контрастное вещество, либо устанавливают шприц-инжектор. Через определенный промежуток времени начинают процедуру сканирования – закатывают человека под дугу томографа и выполняют серию снимков. Чем дальше изучаемый орган расположен от сердца, тем дольше нужно контрасту для его окрашивания.

    КТ с контрастом или без: основные отличия

    При обследовании полых органов обычная нативная КТ без контраста покажет их как однородную серую массу без выделения. Если ввести контрастное вещество, стенки органов окрасятся, что даст возможность рассмотреть любые заболевания их слизистой оболочки и мышечного слоя.

    Во время изучения сосудов только проникновение контрастного вещества в них позволит выявить тромбы и бляшки атеросклероза, а также детализировать границы аневризм, сужений и сплетений сосудов между собой. Нативная КТ не даст такой точной информации даже при подключении «сосудистого режима».

    При диагностике раковых опухолей различия между процедурой с контрастом и без такового проявляются наиболее сильно. Именно злокачественные новообразования питаются наибольшим количеством сосудов, поэтому окрашиваются четко, ярко, с видимыми границами. Поэтому зачастую после нативной КТ, на которой обнаружена опухоль, рекомендуют КТ с контрастированием для уточнения диагноза.

    В целом, отличия между процедурами таковы:

    1. КТ с контрастным усилением за одно обследование дает намного больше информации для врача.
    2. Компьютерная томография с контрастом делает снимки отдельных анатомических зон более детальными, четкими.

    Заболевания, при которых применяется компьютерная томография с контрастом:

    • Раковые опухоли
    • Полипы
    • Кисты
    • Аденомы
    • Липомы
    • Тромбы
    • Сосудистые мальформации
    • Аневризмы
    • Язвы и эрозии
    • Стеноз вен и артерий
    • Стеноз аорты
    • Расслоение аорты
    • Атеросклероз сосудов
    • Бронхиальная астма
    • Бронхоэктазы
    • Абсцессы
    • Флегмоны

    КТ – современное исследование, которое поможет найти различные патологии в организме, зачастую – не обнаруженные прочими методами. Контрастное вещество во время КТ позволит четко визуализировать все отклонения и заболевания быстрым и неинвазивным способом.

    diagnostlab.ru